A283885 Relative of Hofstadter Q-sequence: a(n) = max(0, n+3442) for n <= 0; a(n) = a(n-a(n-1)) + a(n-a(n-2)) + a(n-a(n-3)) for n > 0.
6, 3443, 3444, 3445, 9, 3446, 3447, 3448, 12, 3449, 3450, 3451, 15, 3452, 3453, 17, 3455, 18, 3455, 3457, 3458, 22, 21, 6895, 6889, 9, 18, 6904, 6907, 3451, 22, 3472, 3477, 3455, 27, 36, 3479, 6894, 3446, 39, 3480, 3486, 3450, 42
Offset: 1
Keywords
Links
- Nathan Fox, Table of n, a(n) for n = 1..100000
Programs
Formula
If the index is between 67 and 3443 (inclusive), then a(7n) = 7n+2, a(7n+1) = 7n+3444, a(7n+2) = 7n+3446, a(7n+3) = 7, a(7n+4) = 2n+6929, a(7n+5) = n+6877, a(7n+6) = 3440.
For nonnegative integers i, if 1 <= 5n + r <= (487329/5)*6^(i+1) - 88639/5, then
a((487329/5)*6^i - 28924/5 + 5n) = 5
a((487329/5)*6^i - 28924/5 + 5n + 1) = (1461987/5)*6^i - 52797/5 + 3n
a((487329/5)*6^i - 28924/5 + 5n + 2) = 3
a((487329/5)*6^i - 28924/5 + 5n + 3) = (487329/5)*6^i - 28909/5 + 5n
a((487329/5)*6^i - 28924/5 + 5n + 4) = (1461987/5)*6^i - 52792/5 + 3n.
Comments