cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A283930 Numbers k such that tau(2^k - 1) = tau(2^k + 1).

Original entry on oeis.org

2, 11, 14, 21, 23, 29, 45, 47, 53, 71, 73, 74, 82, 86, 95, 99, 101, 105, 113, 115, 121, 142, 167, 169, 179, 181, 199, 203, 209, 233, 235, 277, 307, 311, 317, 335, 337, 343, 347, 349, 353, 355, 358, 361, 382, 434, 449, 465, 494, 509, 515, 518, 529, 535, 547, 549, 570, 583, 585, 599
Offset: 1

Views

Author

Jaroslav Krizek, Mar 18 2017

Keywords

Comments

tau(k) is the number of divisors of k (A000005).
Numbers k such that A046801(k) = A046798(k).
Numbers k such that A000005(A000225(k)) = A000005(A000051(k)).
Corresponding values of tau(2^k +- 1): 2, 4, 8, 12, 4, 8, 64, 8, 8, 8, 8, 32, 32, 32, 32, 256, 4, 1536, ...
Corresponding pairs of numbers (2^k - 1, 2^k + 1): (3, 5); (2047, 2049); (16383, 16385); (2097151, 2097153); (8388607, 8388609); ...

Examples

			For n = 11; tau(2047) = tau(2049) = 4.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..500] | NumberOfDivisors(2^n - 1) eq NumberOfDivisors(2^n + 1)]
    
  • Mathematica
    Select[Range@ 200, Function[n, Equal @@ Map[DivisorSigma[0, 2^n + #] &, {-1, 1}]]] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    for(n=1, 600, if(numdiv(2^n - 1) == numdiv(2^n + 1), print1(n,", "))) \\ Indranil Ghosh, Mar 18 2017
    
  • Python
    from sympy import divisor_count
    print([n for n in range(1, 601) if divisor_count(2**n + 1) == divisor_count(2**n - 1)]) # Indranil Ghosh, Mar 18 2017
Showing 1-1 of 1 results.