cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A283959 a(n) = (Sum_{j=1..h-1} a(n-j) + a(n-1)*a(n-h+1))/a(n-h) with a(1), ..., a(h)=1, where h = 5.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 13, 33, 85, 561, 1597, 4229, 11089, 73393, 209089, 553873, 1452529, 9613829, 27388957, 72553041, 190270165, 1259338113, 3587744173, 9503894405, 24923939041, 164963678881, 469967097601, 1244937613921, 3264845744161, 21608982595205
Offset: 1

Views

Author

Seiichi Manyama, Mar 18 2017

Keywords

Crossrefs

Cf. A283330.
Cf. A072881 (h=3), A283958 (h=4), this sequence (h=5), A283960 (h=6).

Programs

  • Mathematica
    a[n_]:= If[n<6, 1, (Sum[a[n-j] , {j, 4}] +  a[n - 1] a[n - 4])/a[n - 5]]; Table[a[n], {n, 30}] (* Indranil Ghosh, Mar 18 2017 *)
  • PARI
    a(n) = if(n<6, 1, (sum(j=1, 4, a(n - j)) + a(n - 1)*a(n - 4))/a(n - 5));
    for(n=1, 30, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 18 2017

Formula

a(4*k-1) = 3*a(4*k-2) - a(4*k-3) - 1,
a(4*k) = 3*a(4*k-1) - a(4*k-2) - 1,
a(4*k+1) = 3*a(4*k) - a(4*k-1) - 1,
a(4*k+2) = 7*a(4*k+1) - a(4*k) - 1.
From Colin Barker, Nov 03 2020: (Start)
G.f.: x*(1 + x + x^2 + x^3 - 131*x^4 - 127*x^5 - 119*x^6 - 99*x^7 + 85*x^8 + 33*x^9 + 13*x^10 + 5*x^11) / ((1 - x)*(1 + x)*(1 + x^2)*(1 - 131*x^4 + x^8)).
a(n) = 132*a(n-4) - 132*a(n-8) + a(n-12) for n>12.
(End)

A283960 a(n) = (Sum_{j=1..h-1} a(n-j) + a(n-1)*a(n-h+1))/a(n-h) with a(1), ..., a(h)=1, where h = 6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 6, 16, 41, 106, 276, 2101, 6026, 15976, 41901, 109726, 835906, 2397991, 6358066, 16676206, 43670551, 332688201, 954394051, 2530493951, 6637087801, 17380769451, 132409067806, 379846433966, 1007130234091, 2641544268306, 6917502570826, 52698476298301
Offset: 1

Views

Author

Seiichi Manyama, Mar 18 2017

Keywords

Crossrefs

Cf. A072881 (h=3), A283958 (h=4), A283959 (h=5), this sequence (h=6).

Programs

  • Mathematica
    a[n_]:= If[n<7, 1, (Sum[a[n-j] , {j, 5}] +  a[n - 1] a[n - 5])/a[n - 6]]; Table[a[n], {n, 30}] (* Indranil Ghosh, Mar 18 2017 *)
  • PARI
    a(n) = if(n<7, 1, (sum(j=1, 5, a(n - j)) + a(n - 1)*a(n - 5))/a(n - 6));
    for(n=1, 30, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 18 2017

Formula

a(5*k-2) = 3*a(5*k-3) - a(5*k-4) - 1,
a(5*k-1) = 3*a(5*k-2) - a(5*k-3) - 1,
a(5*k) = 3*a(5*k-1) - a(5*k-2) - 1,
a(5*k+1) = 3*a(5*k) - a(5*k-1) - 1,
a(5*k+2) = 8*a(5*k+1) - a(5*k) - 1.
From Colin Barker, Nov 03 2020: (Start)
G.f.: x*(1 + x + x^2 + x^3 + x^4 - 398*x^5 - 393*x^6 - 383*x^7 - 358*x^8 - 293*x^9 + 276*x^10 + 106*x^11 + 41*x^12 + 16*x^13 + 6*x^14) / ((1 - x)*(1 + x + x^2 + x^3 + x^4)*(1 - 398*x^5 + x^10)).
a(n) = 399*a(n-5) - 399*a(n-10) + a(n-15) for n>15.
(End)
Showing 1-2 of 2 results.