cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283995 Least number with same prime signature as the n-th divisorial: a(n) = A046523(A007955(n)).

Original entry on oeis.org

1, 2, 2, 8, 2, 36, 2, 64, 8, 36, 2, 1728, 2, 36, 36, 1024, 2, 1728, 2, 1728, 36, 36, 2, 331776, 8, 36, 64, 1728, 2, 810000, 2, 32768, 36, 36, 36, 10077696, 2, 36, 36, 331776, 2, 810000, 2, 1728, 1728, 36, 2, 254803968, 8, 1728, 36, 1728, 2, 331776, 36, 331776, 36, 36, 2, 46656000000, 2, 36, 1728, 2097152, 36, 810000, 2, 1728, 36, 810000, 2, 139314069504, 2, 36
Offset: 1

Views

Author

Antti Karttunen, Mar 22 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[n == 1, 1, Times @@ MapIndexed[Prime[First@ #2]^#1 &, FactorInteger[Times @@ Divisors@ n][[All, -1]]]], {n, 74}] (* Michael De Vlieger, Mar 22 2017 *)
  • PARI
    A007955(n) = if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2)); \\ From Charles R Greathouse IV, Feb 11 2011
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From Charles R Greathouse IV, Aug 17 2011
    A283995(n) = A046523(A007955(n));
    
  • Python
    from math import prod, isqrt
    from sympy import prime, factorint, divisor_count
    def A283995(n): return (lambda n:prod(prime(i+1)**e for i, e in enumerate(sorted(factorint(n).values(), reverse=True))))((isqrt(n) if (c:=divisor_count(n)) & 1 else 1)*n**(c//2)) # Chai Wah Wu, Jun 25 2022
  • Scheme
    (define (A283995 n) (A046523 (A007955 n)))
    

Formula

a(n) = A046523(A007955(n)).