A283997 a(n) = n XOR A005187(floor(n/2)), where XOR is bitwise-xor (A003987).
0, 1, 3, 2, 7, 6, 2, 3, 15, 14, 2, 3, 6, 7, 5, 4, 31, 30, 2, 3, 6, 7, 5, 4, 14, 15, 13, 12, 5, 4, 4, 5, 63, 62, 2, 3, 6, 7, 5, 4, 14, 15, 13, 12, 5, 4, 4, 5, 30, 31, 29, 28, 5, 4, 4, 5, 13, 12, 12, 13, 4, 5, 7, 6, 127, 126, 2, 3, 6, 7, 5, 4, 14, 15, 13, 12, 5, 4, 4, 5, 30, 31, 29, 28, 5, 4, 4, 5, 13, 12, 12, 13, 4, 5, 7, 6, 62, 63, 61, 60, 5, 4, 4, 5, 13, 12, 12
Offset: 0
Links
Programs
-
Mathematica
Table[BitXor[n, 2 # - DigitCount[2 #, 2, 1] &@ Floor[n/2]], {n, 0, 106}] (* Michael De Vlieger, Mar 20 2017 *)
-
PARI
b(n) = if(n<1, 0, b(n\2) + n%2); A(n) = 2*n - b(2*n); for(n=0, 110, print1(bitxor(n, A(floor(n/2))),", ")) \\ Indranil Ghosh, Mar 25 2017
-
Python
def A(n): return 2*n - bin(2*n)[2:].count("1") print([n^A(n//2) for n in range(111)]) # Indranil Ghosh, Mar 25 2017
-
Scheme
(define (A283997 n) (A003987bi n (A005187 (floor->exact (/ n 2))))) ;; Where A003987bi implements bitwise-XOR (A003987).