A283998 a(n) = n AND A005187(floor(n/2)), where AND is bitwise-and (A004198).
0, 0, 0, 1, 0, 1, 4, 4, 0, 1, 8, 8, 8, 8, 10, 11, 0, 1, 16, 16, 16, 16, 18, 19, 16, 16, 18, 19, 24, 25, 26, 26, 0, 1, 32, 32, 32, 32, 34, 35, 32, 32, 34, 35, 40, 41, 42, 42, 32, 32, 34, 35, 48, 49, 50, 50, 48, 49, 50, 50, 56, 56, 56, 57, 0, 1, 64, 64, 64, 64, 66, 67, 64, 64, 66, 67, 72, 73, 74, 74, 64, 64, 66, 67, 80, 81, 82, 82, 80, 81, 82, 82, 88, 88, 88, 89
Offset: 0
Links
Programs
-
Mathematica
A[n_]:=2*n - DigitCount[2*n, 2, 1];Table[BitAnd[n, A[Floor[n/2]]], {n, 0, 100}] (* Indranil Ghosh, Mar 25 2017 *)
-
PARI
b(n) = if(n<1, 0, b(n\2) + n%2); A(n) = 2*n - b(2*n); for(n=0, 100, print1(bitand(n, A(floor(n/2))),", ")) \\ Indranil Ghosh, Mar 25 2017
-
Python
def A(n): return 2*n - bin(2*n)[2:].count("1") print([n&A(n//2) for n in range(101)]) # Indranil Ghosh, Mar 25 2017
-
Scheme
(define (A283998 n) (A004198bi n (A005187 (floor->exact (/ n 2))))) ;; Where A004198bi implements bitwise-AND (A004198).