A284091 Indices n where prime(n) + 2*prime(n+1) and 2*prime(n) + prime(n+1) have the same number of prime divisors counted with multiplicity.
2, 3, 6, 11, 12, 15, 16, 17, 19, 20, 23, 25, 27, 30, 33, 34, 37, 38, 47, 48, 51, 53, 56, 57, 58, 60, 66, 68, 75, 76, 77, 78, 79, 86, 87, 89, 90, 93, 94, 99, 100, 101, 107, 110, 123, 124, 128, 133, 137, 138, 139, 141, 143, 145, 147, 151
Offset: 1
Keywords
Examples
n = 15, prime(n) = 47, prime(n+1) = 53, both 2*47 + 53 = 147 = 3*7^2 and 47 + 2*53 = 153 = 3^2*17 are products of 3 primes.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
select(t -> numtheory:-bigomega(2*ithprime(t)+ithprime(t+1)) = numtheory:-bigomega(ithprime(t)+2*ithprime(t+1)), [$1..1000]); # Robert Israel, Mar 20 2017
-
Mathematica
Select[Range[1000],PrimeOmega[{2,1}.{(p=Prime[#]),(q=Prime[#+1])}]==PrimeOmega[{1,2}.{p,q}]&]
-
PARI
list(lim)=my(v=List(),p=2,n); forprime(q=3,, if(n++>lim, break); if(bigomega(p+2*q)==bigomega(2*p+q), listput(v,n)); p=q); Vec(v) \\ Charles R Greathouse IV, Mar 20 2017