cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284114 Number of partitions of n such that Omega(n) (= number of prime divisors of n counted with multiplicity) equals the sum of Omega of all parts; Omega = A001222.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 4, 7, 9, 12, 5, 22, 6, 17, 19, 55, 7, 50, 8, 60, 28, 32, 9, 166, 37, 41, 113, 122, 10, 137, 11, 631, 51, 56, 57, 475, 12, 64, 66, 620, 13, 258, 14, 282, 301, 83, 15, 2229, 90, 359, 95, 394, 16, 1302, 105, 1435, 109, 114, 17, 1708, 18, 125
Offset: 0

Views

Author

Alois P. Heinz, Mar 20 2017

Keywords

Examples

			a(5) = 3: [2,1,1,1], [3,1,1], [5].
a(6) = 5: [2,2,1,1], [3,2,1], [3,3], [4,1,1], [6].
a(7) = 4: [2,1,1,1,1,1], [3,1,1,1,1], [5,1,1], [7].
a(8) = 7: [2,2,2,1,1], [3,2,2,1], [3,3,2], [4,2,1,1], [4,3,1], [6,2], [8].
a(9) = 9: [2,2,1,1,1,1,1], [3,2,1,1,1,1], [3,3,1,1,1], [4,1,1,1,1,1], [5,2,1,1], [5,3,1], [6,1,1,1], [7,2], [9].
a(10) = 12: [2,2,1,1,1,1,1,1], [3,2,1,1,1,1,1], [3,3,1,1,1,1], [4,1,1,1,1,1,1], [5,2,1,1,1], [5,3,1,1], [5,5], [6,1,1,1,1], [7,2,1], [7,3], [9,1], [10].
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, m) option remember; `if`(n=0 or i=1,
          `if`(m=0, 1, 0), `if`(m<0, 0, b(n, i-1, m)+
          `if`(i>n, 0, b(n-i, i, m-bigomega(i)))))
        end:
    a:= n-> b(n$2, bigomega(n)):
    seq(a(n), n=0..80);
  • Mathematica
    b[n_, i_, m_] := b[n, i, m] = If[n == 0 || i == 1, If[m == 0, 1, 0], If[m < 0, 0, b[n, i-1, m] + If[i>n, 0, b[n-i, i, m - PrimeOmega[i]]]]];
    a[0] = 1; a[n_] := b[n, n, PrimeOmega[n]];
    Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Mar 25 2017, translated from Maple *)
  • PARI
    b(n, i, m) = if(n==0 || i==1, if(m==0, 1, 0), if(m<0, 0, b(n, i - 1, m) + if(i>n, 0, b(n - i, i, m - bigomega(i)))));
    a(n) = if(n<1, 1, b(n, n, bigomega(n)));
    for(n=0, 80, print1(a(n),", ")) \\ Indranil Ghosh, Mar 25 2017, translated from Mathematica

Formula

a(p) = A000720(p) for prime p.