A284116 a(n) = largest number of distinct words arising in Post's tag system {00, 1101} applied to a binary word w, over all starting words w of length n, or a(n) = -1 if there is a word w with an unbounded trajectory.
4, 7, 6, 7, 22, 23, 24, 25, 30, 31, 34, 421, 422, 423, 422, 423, 424, 2169, 2170, 2171, 2170, 2171, 2172, 2165, 2166, 2167, 24566, 24567, 24568, 24567, 24568, 24569, 24568, 24569, 24570, 253513, 253514, 342079, 342080, 342083, 342084, 342103, 20858070
Offset: 1
Keywords
Examples
Suppose n=1. Then w = 0 ->000 -> w' = empty word, and w = 1 -> 11101 -> w' = 01 -> 0100 -> w'' = 0 -> 000 -> w''' = empty word. So a(1) = 4 by choosing w = 1. For n = 5 the orbit of the word 10010 begins 10010, 101101, 1011101, ..., 0000110111011101, and the next word in the orbit has already appeared. The orbit consists of 22 distinct words. From _David A. Corneth_, Aug 02 2017: (Start) The 5-letter word w = 10100 can be described as (a, b) = (5, 20). This is equivalent to (5, bitand(20, floor(2^7 / 7))) = (5, bitand(20, 18)) = (5, 16). As 16 >= 2^(5-1), w' = (5 + 1, bitand(16*16 + 13, floor(2^(5 + 3) / 7))) = (6, bitand(279, 36)) = (6, 4). w'' = w = (5, 16) so 10100 ~ 10000 ends in a period. (End) Words w that achieve a(1) through a(7) are 1, 10, 100, 0001, 10010, 100000, 0001000. - _N. J. A. Sloane_, Aug 17 2017
References
- John Stillwell, Elements of Mathematics: From Euclid to Goedel, Princeton, 2016. See page 100, Post's tag system.
Links
- Peter R. J. Asveld, On a Post's System of Tag. Bulletin of the EATCS 36 (1988), 96-102.
- Liesbeth De Mol, Tracing unsolvability. A historical, mathematical and philosophical analysis with a special focus on tag systems, Ph.D. Thesis, Universiteit Gent, 2007.
- Liesbeth De Mol, Tag systems and Collatz-like functions Theoret. Comput. Sci. 390 (2008), no. 1, 92-101.
- Liesbeth De Mol, On the complex behavior of simple tag systems—an experimental approach, Theoret. Comput. Sci. 412 (2011), no. 1-2, 97-112.
- Emil L. Post, Formal Reductions of the General Combinatorial Decision Problem, Amer. J. Math. 65, 197-215, 1943. See page 204.
- Don Reble, Python program for A289670.
- Shigeru Watanabe, Periodicity of Post's normal process of tag, in Jerome Fox, ed., Proceedings of Symposium on Mathematical Theory of Automata, New York, April 1962, Polytechnic Press, Polytechnic Institute of Brooklyn, 1963, pp. 83-99. [Annotated scanned copy]
Crossrefs
Programs
-
Mathematica
Table[nmax = 0; For[i = 0, i < 2^n, i++, lst = {}; w = IntegerString[i, 2, n]; While[! MemberQ[lst, w], AppendTo[lst, w]; If[w == "", Break[]]; If[StringTake[w, 1] == "0", w = StringDrop[w <> "00", 3], w = StringDrop[w <> "1101", 3]]]; nmax = Max[nmax, Length[lst]]]; nmax, {n, 1, 12}] (* Robert Price, Sep 26 2019 *) (* Or, using the (c,d) procedure: *) Table[nmax = 0; For[i = 0, i < 2^n, i++, c = n; d = i; lst = {}; While[! MemberQ[lst, {c, d}], AppendTo[lst, {c, d}]; If[c == 0, Break[]]; If[ d < 2^(c - 1), d = BitAnd[4*d, 2^(c - 1) - 1]; c--, d = BitAnd[16*d + 13, 2^(c + 1) - 1]; c++]]; nmax = Max[nmax, Length[lst]]]; nmax, {n, 1, 12}] (* Robert Price, Sep 26 2019 *)
Extensions
a(19)-a(43) from Lars Blomberg, Apr 09 2017
Edited by N. J. A. Sloane, Jul 29 2017 and Oct 23 2017 (adding escape clause in case an infinite trajectory exists)
Comments