A284156 4-untouchable numbers.
298, 1006, 1016, 1108, 1204, 1492, 1502, 1940, 2164, 2344, 2370, 2770, 3116, 3358, 3410, 3482, 3596, 3676, 3688, 3976, 4076, 4164, 4354, 4870, 5206, 5634, 5770, 6104, 6206, 6332, 6488, 6696, 6850, 7008, 7118, 7290, 7496, 7586, 7654, 7812, 7922, 8164, 8396, 8434
Offset: 1
Keywords
Examples
All even numbers less than 298 have a preimage under s4(n), so they are not 4-untouchable. a(1) = 298, because 298 = s3(668) but 668 is untouchable. Therefore 298 is not in the image of s4(n). Note that 668 is the only preimage of 298 under s3(n). a(2) = 1006, because 1006 = s3(5366) but 5366 is untouchable. a(3) = 1016, because 1016 = s3(4402) = s3(5378) but both 4402 and 5378 are untouchable.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..10000
- Kevin Chum, Richard K. Guy, Michael J. Jacobson Jr. and Anton S. Mosunov, Numerical and Statistical Analysis of Aliquot Sequences, arXiv:2110.14136 [math.NT], 2021.
- R. K. Guy and J. L. Selfridge, What drives an aliquot sequence?, Math. Comp. 29 (129), 1975, 101-107.
- Paul Pollack and Carl Pomerance, Some problems of Erdos on the sum-of-divisors function, Trans. Amer. Math. Soc., Ser. B, 3 (2016), 1-26.
- Carl Pomerance, The first function and its iterates, A Celebration of the Work of R. L. Graham, S. Butler, J. Cooper, and G. Hurlbert, eds., Cambridge U. Press, to appear.
- Carl Pomerance and Hee-Sung Yang, Variant of a theorem of Erdos on the sum-of-proper-divisors function, Math. Comp., 83 (2014), 1903-1913.
Extensions
Several missing terms inserted by Jinyuan Wang, Jan 07 2025
Comments