A284171 Number of partitions of n into distinct perfect powers (including 1).
1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 2, 3, 2, 1, 2, 3, 3, 2, 4, 5, 3, 2, 4, 5, 3, 2, 4, 6, 4, 2, 4, 7, 5, 2, 5, 8, 5, 2, 5, 8, 6, 3, 5, 10, 8, 4, 6, 10, 8, 4, 6, 10, 9, 5, 7, 11, 10, 6, 8, 12, 10, 6, 8, 13, 11, 7, 9, 15, 13, 7, 10, 16, 14, 8, 10, 16, 15, 9, 10, 17, 16, 9, 11
Offset: 0
Keywords
Examples
a(25) = 3 because we have [25], [16, 9] and [16, 8, 1].
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Perfect Power
- Index entries for related partition-counting sequences
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[(1 + x) Product[(1 + Boole[GCD @@ FactorInteger[k][[All, 2]] > 1] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
-
PARI
Vec((1 + x) * prod(k=1, 100, 1 + (gcd(factorint(k)[,2])>1)*x^k) + O(x^101)) \\ Indranil Ghosh, Mar 21 2017
Comments