cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284173 a(n) = (Sum_{k=1..n} q(k+1-q(k))) mod n where q(k) = A005185(k).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 5, 7, 9, 1, 2, 4, 7, 9, 12, 15, 0, 3, 6, 9, 12, 17, 20, 0, 4, 8, 12, 16, 22, 26, 31, 4, 9, 14, 20, 26, 31, 37, 3, 8, 14, 20, 26, 32, 38, 1, 4, 11, 18, 23, 30, 39, 46, 53, 6, 12, 20, 28, 36, 44, 56, 1, 9, 21, 28, 36, 46, 57, 68, 9, 20, 30, 39, 48, 60, 69, 2, 12
Offset: 1

Views

Author

Altug Alkan, Mar 21 2017

Keywords

Comments

Sequence represents d(n, 1, 1) where d(n, i, j) = (Sum_{k=1..n} q(k+j-q(k))) mod (n*i) where q(k) = A005185(k).

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N)
    B[1]:= 1:
    B[2]:= 1:
    for n from 3 to N do
      B[n]:= B[n-B[n-1]] + B[n-B[n-2]];
    od:
    seq(add(B[k+1-B[k]], k=1..n) mod n, n=1..N); # Robert Israel, Mar 22 2017
  • Mathematica
    q[n_]:=If[n<3, 1, q[n - q[n - 1]] + q[n - q[n - 2]]]; a[n_]:=Mod[Sum[q[k + 1 - q[k]],{k, n}], n]; Table[a[n], {n, 100}] (* Indranil Ghosh, Mar 21 2017 *)
  • PARI
    a=vector(1000); a[1]=a[2]=1; for(n=3, #a, a[n]=a[n-a[n-1]]+a[n-a[n-2]]); vector(#a, n, sum(k=1, n, a[k+1-a[k]]) % n)
    
  • Scheme
    (define (A284173 n) (modulo (A280706 n) n)) ;; Other code as in A280706, A283467 and A005185 - Antti Karttunen, Mar 22 2017

Formula

a(n) = A280706(n) mod n. - Antti Karttunen, Mar 22 2017