A284202 Numbers m such that phi(sum of divisors of m) = lambda(sum of distinct primes dividing m).
3, 6, 10, 22, 34, 142, 214, 382, 862, 2302, 5182, 279934, 944782, 1572862, 1990654, 114791254, 127401982, 339738622, 8153726974, 21743271934, 4696546738174, 112717121716222, 158329674399742, 169075682574334, 300578991243262
Offset: 1
Examples
34 is in the sequence because A000010(A000203(34)) = A000010(54) = 18, and A002322(A008472(34)) = A002322(19) = 18.
Programs
-
Mathematica
Select[Range[10^6], EulerPhi@ DivisorSigma[1, #] == CarmichaelLambda[Total@ FactorInteger[#][[All, 1]]] &]
-
PARI
lambda(n) = lcm(znstar(n)[2]); \\ after Charles R Greathouse IV in A002322 sopf(n) = vecsum(factor(n)[,1]) isok(n) = eulerphi(sigma(n)) == lambda(sopf(n)) \\ Indranil Ghosh, Mar 22 2017
Comments