A284204 Eighth column of Euler's difference table in A068106.
0, 0, 0, 0, 0, 0, 5040, 35280, 287280, 2656080, 27422640, 312273360, 3884393520, 52370755920, 760381337520, 11824686110160, 196038409800240, 3450899827705680, 64272619406504880, 1262590566656060880, 26087355385405781040, 565510731026706254160
Offset: 1
Keywords
Examples
a(11)=27422640 since this is the number of permutations in S11 that avoid substrings {18,29,3(10),4(11)}.
Links
- Enrique Navarrete, Generalized K-Shift Forbidden Substrings in Permutations, arXiv:1610.06217 [math.CO], 2016.
Programs
-
Mathematica
With[{k = 8}, ConstantArray[0, k - 2]~Join~Table[Sum[(-1)^j*Binomial[n - (k - 1), j] (n - j)!, {j, 0, n - (k - 1)}], {n, k - 1, k + 12}]] (* Michael De Vlieger, Mar 26 2017 *)
Formula
For n>=8: a(n) = Sum_{j=0..n-7} (-1)^j*binomial(n-7,j)*(n-j)!.
Note a(n)/n! ~ 1/e.
Comments