A284205 Ninth column of Euler's difference table in A068106.
0, 0, 0, 0, 0, 0, 0, 40320, 322560, 2943360, 30078720, 339696000, 4196666880, 56255149440, 812752093440, 12585067447680, 207863095910400, 3646938237505920, 67723519234210560, 1326863186062565760, 27349945952061841920, 591598086412112035200
Offset: 1
Keywords
Examples
a(12)=339696000 since this is the number of permutations in S12 that avoid substrings {19,2(10),3(11),4(12)}.
Links
- Enrique Navarrete, Generalized K-Shift Forbidden Substrings in Permutations, arXiv:1610.06217 [math.CO], 2016.
Programs
-
Mathematica
With[{k = 9}, ConstantArray[0, k - 2]~Join~Table[Sum[(-1)^j*Binomial[n - (k - 1), j] (n - j)!, {j, 0, n - (k - 1)}], {n, k - 1, k + 12}]] (* Michael De Vlieger, Mar 26 2017 *)
Formula
For n>=9: a(n) = Sum_{j=0..n-8} (-1)^j*binomial(n-8,j)*(n-j)!.
Note a(n)/n! ~ 1/e.
Comments