A284214 Remainder when sum of first n terms of A006949 is divided by n.
0, 0, 0, 1, 2, 3, 5, 0, 2, 4, 6, 9, 0, 3, 7, 12, 0, 4, 8, 12, 17, 1, 6, 12, 19, 0, 6, 13, 21, 29, 7, 16, 25, 0, 8, 16, 24, 33, 4, 13, 23, 34, 2, 12, 23, 35, 0, 12, 25, 38, 0, 12, 25, 39, 53, 12, 27, 42, 57, 13, 29, 45, 62, 16, 33, 50, 0, 16, 32, 48, 65, 11, 28, 46, 65, 8, 26, 45, 65, 5
Offset: 1
Keywords
Examples
a(6) = 3 because Sum_{k=0..5} A006949(k) = 1 + 1 + 1 + 2 + 2 + 2 = 9 and remainder when 9 is divided by 6 is 3.
Links
- Altug Alkan, Table of n, a(n) for n = 1..20000
- Altug Alkan, Alternative graph of A284214
- Altug Alkan, Alternative scatterplot of A284214
- Altug Alkan, Illustration of residue classes modulo 4
Programs
-
Mathematica
a[0] = a[1] = a[2] = 1; a[n_] := a[n] = a[n - 1 - a[n - 1]] + a[n - 2 - a[n - 2]]; MapIndexed[Mod[#1, First@ #2] &, Accumulate@ Table[a@ n, {n, 0, 79}]] (* Michael De Vlieger, Mar 24 2017 *)
Formula
a(n) = (Sum_{k=0..n-1} A006949(k)) mod n.
Comments