cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284229 a(n) is the least k such that A073802(k) = n.

Original entry on oeis.org

1, 10, 12, 6, 336, 24, 5952, 168, 792, 496, 666624, 270, 10924032, 6720, 7344, 120, 3757637632, 4284, 45091651584, 2160, 79488, 1820672, 11544784011264, 672, 298080, 29331456, 106200, 13440, 53620880789471232, 10080, 1501384662105194496, 6552, 7022592, 7515275264
Offset: 1

Views

Author

Paolo P. Lava, Mar 23 2017

Keywords

Comments

Composite numbers that have just 1 as divisor that satisfies the condition for which sigma(k) / d_i is an integer are the Duffinian numbers (A003624).
Alternative definition: Least k such that tau(gcd(k,sigma(k))) = n. - Giovanni Resta, Mar 23 2017

Examples

			The divisors of 12 are 1, 2, 3, 4, 6, 12 and sigma(12) = 28. Then:
1) 28 / 1 = 28;
2) 28 / 2 = 14;
3) 28 / 4 = 7;
and 12 is the least number to have this property. Therefore a(3) = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local k,n; for k from 1 to q do
    for n from 1 to q do if tau(gcd(n,sigma(n)))=k then
    print(n); break; fi; od; od; end: P(10^9);
  • Mathematica
    TakeWhile[#, # > 0 &] &@ Table[If[KeyExistsQ[#, n], First@ Lookup[#, n], -1], {n, Max@ Keys@ #}] &@ KeySort@ PositionIndex@ Table[DivisorSum[k, 1 &, IntegerQ[DivisorSigma[1, k]/#] &], {k, 10^6}] (* per Name, Version 10, or *)
    TakeWhile[#, # > 0 &] &@ Table[If[KeyExistsQ[#, n], First@ Lookup[#, n], -1], {n, Max@ Keys@ #}] &@ KeySort@ PositionIndex@ Table[DivisorSigma[0, GCD[k, DivisorSigma[1, k]]], {k, 10^7}] (* faster, Version 10, Michael De Vlieger, Mar 24 2017 *)
  • PARI
    nb(n) = my(s = sigma(n)); sumdiv(n, d, (s % d) == 0);
    a(n) = k=1; while(nb(k) != n, k++); k; \\ Michel Marcus, Mar 24 2017

Extensions

a(13), a(17), a(19) and from a(22) to a(34) from Giovanni Resta, Mar 23 2017
Name proposed by Michel Marcus, Mar 24 2017