A284249 Number T(n,k) of k-element subsets of [n] whose sum is a triangular number; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 3, 1, 1, 1, 3, 4, 5, 3, 1, 1, 1, 3, 5, 8, 6, 4, 1, 1, 1, 3, 7, 12, 11, 9, 4, 1, 1, 1, 3, 9, 16, 20, 18, 11, 5, 1, 1, 1, 4, 10, 22, 32, 35, 26, 14, 5, 1, 1, 1, 4, 12, 29, 48, 61, 55, 36, 17, 6, 1, 1, 1, 4, 14, 37, 70, 100, 106, 84, 48, 21, 6, 1, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1, 1; 1, 1, 1; 1, 2, 1, 1; 1, 2, 2, 1, 1; 1, 2, 3, 3, 1, 1; 1, 3, 4, 5, 3, 1, 1; 1, 3, 5, 8, 6, 4, 1, 1; 1, 3, 7, 12, 11, 9, 4, 1, 1; 1, 3, 9, 16, 20, 18, 11, 5, 1, 1; 1, 4, 10, 22, 32, 35, 26, 14, 5, 1, 1; 1, 4, 12, 29, 48, 61, 55, 36, 17, 6, 1, 1; 1, 4, 14, 37, 70, 100, 106, 84, 48, 21, 6, 1, 1;
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- Wikipedia, Triangular number
Crossrefs
Programs
-
Maple
b:= proc(n, s) option remember; expand(`if`(n=0, `if`(issqr(8*s+1), 1, 0), b(n-1, s)+x*b(n-1, s+n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)): seq(T(n), n=0..16);
-
Mathematica
b[n_, s_] := b[n, s] = Expand[If[n == 0, If[IntegerQ @ Sqrt[8*s + 1], 1, 0], b[n - 1, s] + x*b[n - 1, s + n]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]]; Table[T[n], {n, 0, 16}] // Flatten (*Jean-François Alcover, May 29 2018, from Maple *)