A284263 a(n) = A252459(2*A000040(n)), a(0) = 0 by convention.
0, 0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..11000
Programs
-
Mathematica
a[n_] := If[n<1, 0, Block[{k=1}, While[Prime[n + k - 1] > Prime[k]^2, k++]; k - 1]]; Table[a[n], {n, 0, 130}] (* Indranil Ghosh, Mar 24 2017 *)
-
PARI
A284263(n) = { my(k=1); if(0==n, 0, while(prime(n+k-1) > (prime(k)^2), k = k+1);(k-1)); };
-
Python
from sympy import prime def a(n): if n<1: return 0 k=1 while prime(n + k - 1)>prime(k)**2:k+=1 return k - 1 # Indranil Ghosh, Mar 24 2017
-
Scheme
(define (A284263 n) (if (zero? n) n (A252459 (* 2 (A000040 n)))))