A284327 a(n) is the least positive integer such that n^2 + a(n)^2 and n^2 + (a(n) - 2)^2 are primes.
1, 1, 10, 1, 4, 1, 10, 5, 16, 1, 6, 25, 10, 1, 4, 1, 10, 7, 16, 1, 46, 15, 20, 1, 6, 1, 22, 15, 6, 13, 6, 5, 190, 11, 18, 1, 30, 15, 46, 1, 46, 25, 10, 21, 16, 21, 10, 37, 6, 19, 16, 5, 12, 1, 6, 1, 52, 5, 26, 31, 26, 45, 40, 11, 4, 1, 20, 7, 196, 19, 16
Offset: 1
Keywords
Examples
a(1) = 1 since 1^2 + 1^2 = 2 and 1^2 + (1 - 2)^2 = 2 are primes.
Links
- Lars-Erik Svahn, Table of n, a(n) for n = 1..99
- Lars-Erik Svahn, numbertheory.4th
- Akshaa Vatwani, Bounded gaps between Gaussian primes, Journal of Number Theory, Volume 171, February 2017, Pages 449-473.
- Eric Weisstein's World of Mathematics, Gaussian prime
- Index entries for Gaussian integers and primes
Programs
-
Mathematica
Rest@ FoldList[Module[{k = 1}, While[Times @@ Boole@ Map[PrimeQ, {#2^2 + k^2, #2^2 + (k - 2)^2}] < 1, k++]; k] &, 1, Range@ 71] (* Michael De Vlieger, Mar 25 2017 *)
-
PARI
a(n) = k=0; while (! (isprime(n^2+k^2) && isprime(n^2+(k-2)^2)), k++); k; \\ Michel Marcus, Mar 25 2017
-
Python
from sympy import isprime def a(n): k=0 while True: if isprime(n**2 + k**2) and isprime(n**2 + (k - 2)**2): return k else: k+=1 print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Mar 31 2017
Formula
a(n) = 1 for n in A005574. - Michel Marcus, Mar 31 2017
Comments