A284342 Numbers n such that A065642(n) < n*lpf(n), where lpf = least prime factor (A020639).
12, 18, 24, 36, 40, 45, 48, 50, 54, 56, 60, 63, 72, 75, 80, 84, 90, 96, 98, 100, 108, 112, 120, 126, 132, 135, 144, 147, 150, 156, 160, 162, 168, 175, 176, 180, 189, 192, 196, 198, 200, 204, 208, 216, 224, 225, 228, 234, 240, 242, 245, 250, 252, 264, 270, 275, 276, 280, 288, 294, 297, 300
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[2, 300], Function[{n, c, lpf}, SelectFirst[Range[n + 1, n^2], Times @@ FactorInteger[#][[All, 1]] == c &] < n lpf] @@ {#1, Times @@ #2, #2[[1]]} & @@ {#, FactorInteger[#][[All, 1]]} &] (* Michael De Vlieger, Oct 31 2018 *)
-
PARI
for(n=1,300,for(k=1,n^2-n,a=factorback(factorint(n)[,1]); b=factorback(factorint(n+k)[,1]); c=vecmin(factor(n)[,1]); if(a==b&&n+k
-
PARI
A020639(n) = if(1==n,n,vecmin(factor(n)[, 1])); A007947(n) = factorback(factorint(n)[, 1]); \\ From Andrew Lelechenko, May 09 2014 A065642(n) = { my(r=A007947(n)); if(1==n,n,n = n+r; while(A007947(n) <> r, n = n+r); n); }; isA284342(n) = (A065642(n) < n*A020639(n)); n=0; k=1; while(k <= 10000, n=n+1; if(isA284342(n),write("b284342.txt", k, " ", n);k=k+1)); \\ Antti Karttunen, Apr 19 2017
-
Python
from operator import mul from sympy import primefactors from functools import reduce def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n)) def a065642(n): if n==1: return 1 r=a007947(n) n = n + r while a007947(n)!=r: n+=r return n print([n for n in range(10, 301) if a065642(n)
Indranil Ghosh, Apr 20 2017
Comments