A284376 a(n) is the least nonnegative integer such that n + i*a(n) is a Gaussian prime.
3, 1, 1, 0, 1, 2, 1, 0, 3, 4, 1, 0, 7, 2, 1, 2, 1, 2, 5, 0, 1, 4, 5, 0, 1, 4, 1, 2, 5, 4, 11, 0, 3, 2, 5, 2, 1, 2, 3, 10, 1, 4, 5, 0, 9, 2, 5, 0, 13, 4, 7, 4, 3, 10, 1, 4, 1, 2, 3, 0, 13, 10, 3, 32, 9, 2, 1, 0, 5, 10, 3, 0, 5, 2, 1, 4, 5, 10, 7, 0, 7, 4, 3, 0, 1, 2, 9, 2, 3, 4, 1, 4, 7, 8, 1, 2, 5, 2, 3, 4, 3
Offset: 0
Keywords
Links
- Lars-Erik Svahn, Table of n, a(n) for n = 0..10000
- Lars-Erik Svahn, numbertheory.4th
- Akshaa Vatwani, Bounded gaps between Gaussian primes, Journal of Number Theory, Volume 171, February 2017, Pages 449-473.
- Wikipedia, Gaussian prime
- Index entries for Gaussian integers and primes
Programs
-
Maple
f:= proc(n) local k; for k from 0 do if GaussInt:-GIprime(n+I*k) then return k fi od end proc: map(f, [$0..100]); # Robert Israel, Apr 07 2017
-
Mathematica
Table[k = 0; While[! PrimeQ[n + I k, GaussianIntegers -> True], k++]; k, {n, 0, 100}] (* Michael De Vlieger, Mar 29 2017 *)
Formula
From Michel Marcus, Mar 30 2017: (Start)
a(n) = 0 for n in A002145.
a(n) = 1 for n in A005574.
(End)