A284398 Table read by rows: T(n,k) is the number of n-digit numbers that have exactly k divisors.
1, 4, 2, 2, 0, 21, 2, 30, 2, 16, 1, 10, 1, 2, 0, 5, 0, 143, 7, 260, 1, 94, 1, 170, 7, 20, 0, 92, 0, 5, 4, 47, 0, 17, 0, 11, 1, 0, 0, 16, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1061, 14, 2316, 1, 654, 0, 1934, 24, 128, 1, 943, 1, 36, 11, 753, 0, 142, 0, 146, 4, 3, 0, 433
Offset: 1
Examples
Table begins: row 1: 1, 4, 2, 2; row 2: 0, 21, 2, 30, 2, 16, 1, 10, 1, 2, 0, 5; row 3: 0, 143, 7, 260, 1, 94, 1, 170, 7, 20, 0, 92, 0, 5, 4, 47, 0, 17, 0, 11, 1, 0, 0, 16, 0, 0, 1, 1, 0, 1, 0, 1; row 4: 0, 1061, 14, 2316, 1, 654, 0, 1934, 24, 128, 1, 943, 1, 36, 11, 753, 0, 142, 0, 146, 4, 3, 0, 433, 1, 0, 6, 29, 0, 43, 0, 129, 1, 0, 1, 80, 0, 0, 0, 36, 0, 7, 0, 0, 3, 0, 0, 45, 0, 2, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 0, 2;
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..1696 (first 8 rows of table)
Crossrefs
Programs
-
Mathematica
Table[Block[{t = KeySort[10^n - 1 + PositionIndex@ DivisorSigma[0, #] &@ Range[10^n, 10^(n + 1) - 1]]}, ReplacePart[ConstantArray[0, Max@ Keys@ t], Map[# -> Length@ Lookup[t, #] &, Keys@ t]]], {n, 0, 3}] (* Michael De Vlieger, Nov 01 2017 *)
Comments