cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A379566 Number of n-digit numbers that have exactly 3 divisors.

Original entry on oeis.org

2, 2, 7, 14, 40, 103, 278, 783, 2172, 6191, 17701, 51205, 149149, 436932, 1287378, 3809498, 11321211, 33764868, 101029398, 303175579, 912147300, 2750855002, 8313825647, 25176031558, 76375623757, 232082001064, 706304629714, 2152571584249, 6568923555719
Offset: 1

Views

Author

Seiichi Manyama, Dec 26 2024

Keywords

Crossrefs

Column k=3 of A284398.

Formula

a(n) = A122121(n) - A122121(n-1).

Extensions

a(18)-a(29) from Seiichi Manyama using A122121 data, Dec 26 2024

A379568 Number of n-digit numbers that have exactly 5 divisors.

Original entry on oeis.org

0, 2, 1, 1, 3, 4, 5, 9, 15, 25, 37, 66, 107, 171, 293, 490, 810, 1362, 2302, 3889, 6552, 11149, 18950, 32255, 55053, 94096, 161036, 275896, 473709, 813669, 1399593, 2409905, 4154437, 7166774, 12375776, 21389092, 36994679, 64034719, 110918422, 192257157, 333449674, 578697626
Offset: 1

Views

Author

Seiichi Manyama, Dec 26 2024

Keywords

Comments

A number has exactly 5 divisors if and only if it is the fourth power of a prime. - David Radcliffe, Dec 29 2024

Crossrefs

Column k=5 of A284398.

Programs

  • Mathematica
    Table[PrimePi[10^(n/4)]-PrimePi[10^((n-1)/4)],{n,50}] (* Vincenzo Librandi, Dec 30 2024 *)
  • Python
    from sympy import primepi
    def a379568(n): return primepi(10**(n/4)) - primepi(10**((n-1)/4)) # David Radcliffe, Dec 29 2024

Formula

a(n) = PrimePi(10^(n/4)) - PrimePi(10^((n-1)/4)). - David Radcliffe, Dec 29 2024

Extensions

a(36)-a(42) from David Radcliffe, Dec 29 2024

A379569 Number of n-digit numbers that have exactly 6 divisors.

Original entry on oeis.org

0, 16, 94, 654, 4863, 38243, 313705, 2658846, 23073712, 203859889, 1826368510, 16544195786, 151222451513, 1392635179004, 12906366376283, 120260052661235
Offset: 1

Views

Author

Seiichi Manyama, Dec 26 2024

Keywords

Examples

			For n = 2 the a(2) = 16 numbers are 12, 18, 20, 28, 32, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99.
		

Crossrefs

Column k=6 of A284398. Cf. A030515 (Numbers with exactly 6 divisors).

Programs

  • Python
    from math import isqrt
    from sympy import primerange, primepi, integer_nthroot
    def _sum(N): return sum(primepi(N//(p * p)) for p in primerange(isqrt(N//2)+1)) - primepi(integer_nthroot(N, 3)[0]) + primepi(integer_nthroot(N, 5)[0])
    def a379569(n): return sum(10**n) - _sum(10**(n-1)) # _David Radcliffe, Dec 29 2024

Formula

Sum_{i=1..n} a(i) = Sum_{p prime} PrimePi(10^n/p^2) - PrimePi(10^(n/3)) + PrimePi(10^(n/5)). - David Radcliffe, Dec 29 2024

Extensions

a(10)-a(15) from David Radcliffe, Dec 29 2024
a(16) from David Radcliffe, Jan 01 2025

A300509 a(n) is the number of numbers in the interval [2^(n-1), 2^n-1] that have exactly n divisors.

Original entry on oeis.org

1, 2, 1, 4, 1, 6, 1, 25, 3, 10, 1, 212, 1, 27, 8, 3625, 1, 1291, 1, 7687, 18, 265, 1, 629369, 4, 885, 695, 365370, 1, 685360, 1, 178723829, 131, 10782, 12, 311470930, 1, 38692, 413, 6162245368, 1, 381481569, 1, 1067082439, 139407, 513855, 1
Offset: 1

Views

Author

Jon E. Schoenfield, May 25 2018

Keywords

Comments

Number of n-digit binary numbers with exactly n divisors.
If p is an odd prime, then the only p-digit binary number having exactly p divisors is 2^(p-1), so a(p) = 1.
Only squares have an odd number of divisors, so for odd values of n, a(n) is the number of numbers in the interval [ceiling(sqrt(2^(n-1))), floor(sqrt(2^n-1))] whose squares have exactly n divisors. The next few odd-indexed terms are a(41) = 1, a(43) = 1, a(45) = 139407, a(47) = 1, and a(49) = 8. - Jon E. Schoenfield, May 26 2018

Examples

			a(1) = 1 because the only number in the interval [2^(1-1), 2^1 - 1] = [1, 1] having exactly 1 divisor is 1.
a(2) = 2 because each of the two numbers in the interval [2^(2-1), 2^2 - 1] = [2, 3] has exactly 2 divisors.
a(8) = 25 because the numbers in the interval [2^(8-1), 2^8 - 1] = [128, 255] having exactly 8 divisors are the 1 number of the form p^7 {i.e., 2^7 = 128}, the 8 numbers of the form p^3 * q {135, 136, 152, 184, 189, 232, 248, 250}, and the 16 numbers of the form p*q*r {130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 222, 230, 231, 238, 246, 255}; 1 + 8 + 16 = 25.
		

Crossrefs

Main diagonal of A346730.

Programs

  • PARI
    a(n) = sum(k=2^(n-1), 2^n-1, numdiv(k)==n); \\ Michel Marcus, May 26 2018

Extensions

a(26)-a(38) from Giovanni Resta, May 26 2018
a(39) from Jon E. Schoenfield, May 26 2018
a(40)-a(41) from Giovanni Resta, May 27 2018
a(42)-a(47) from Jon E. Schoenfield, May 27 2018

A379567 Number of n-digit numbers that have exactly 4 divisors.

Original entry on oeis.org

2, 30, 260, 2316, 20719, 186565, 1694033, 15522194, 143359184, 1332981873, 12466196499, 117165976234, 1105961883514, 10478813824875, 99613913708218, 949727471728542
Offset: 1

Views

Author

Seiichi Manyama, Dec 26 2024

Keywords

Crossrefs

Column k=4 of A284398.
Cf. A035533.

Formula

a(n) = A035533(n) - A035533(n-1) for n > 2.

Extensions

a(10)-a(16) from Seiichi Manyama using A035533 data, Dec 26 2024

A379570 Number of n-digit numbers that have exactly 8 divisors.

Original entry on oeis.org

0, 10, 170, 1934, 20067, 202246, 2003991, 19674052, 192215670, 1873532828, 18242642732, 177582019015, 1728951136938, 16840198807124, 164117159854744, 1600427660469575, 15617400806292160
Offset: 1

Views

Author

Seiichi Manyama, Dec 26 2024

Keywords

Comments

A number has exactly 8 divisors iff it can be expressed as p*q*r, p^3*q, or p^7, where p, q, and r are distinct primes. - David Radcliffe, Dec 30 2024

Crossrefs

Column k=8 of A284398.
Cf. A215218.

Programs

  • Python
    # See LINKS.

Formula

Sum_{k=1..n} a(k) = A215218(n) + Sum_{p prime} PrimePi[N/p^3] - PrimePi[N^(1/4)] + PrimePi[N^(1/7)] where N = 10^n. - David Radcliffe, Dec 30 2024

Extensions

a(10) from Giorgos Kalogeropoulos, Dec 30 2024
a(11)-a(17) from David Radcliffe, Jan 01 2025
Showing 1-6 of 6 results.