cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284465 Number of compositions (ordered partitions) of n into prime power divisors of n (not including 1).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 1, 6, 2, 2, 1, 36, 1, 2, 2, 56, 1, 90, 1, 201, 2, 2, 1, 4725, 2, 2, 20, 1085, 1, 15778, 1, 5272, 2, 2, 2, 476355, 1, 2, 2, 270084, 1, 302265, 1, 35324, 3910, 2, 1, 67279595, 2, 14047, 2, 219528, 1, 5863044, 2, 14362998, 2, 2, 1, 47466605656, 1, 2, 35662, 47350056, 2, 119762253, 1, 9479643
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 27 2017

Keywords

Examples

			a(8) = 6 because 8 has 4 divisors {1, 2, 4, 8} among which 3 are prime powers > 1 {2, 4, 8} therefore we have [8], [4, 4], [4, 2, 2], [2, 4, 2], [2, 2, 4] and [2, 2, 2, 2].
		

Crossrefs

Programs

  • Maple
    F:= proc(n) local f,G;
          G:= 1/(1 - add(add(x^(f[1]^j),j=1..f[2]),f = ifactors(n)[2]));
          coeff(series(G,x,n+1),x,n);
    end proc:
    map(F, [$0..100]); # Robert Israel, Mar 29 2017
  • Mathematica
    Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[Boole[PrimePowerQ[d[[k]]]] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 68}]
  • Python
    from sympy import divisors, primefactors
    from sympy.core.cache import cacheit
    @cacheit
    def a(n):
        l=[x for x in divisors(n) if len(primefactors(x))==1]
        @cacheit
        def b(m): return 1 if m==0 else sum(b(m - j) for j in l if j <= m)
        return b(n)
    print([a(n) for n in range(71)]) # Indranil Ghosh, Aug 01 2017

Formula

a(n) = [x^n] 1/(1 - Sum_{p^k|n, p prime, k>=1} x^(p^k)).
a(n) = 1 if n is a prime.
a(n) = 2 if n is a semiprime.