A284465 Number of compositions (ordered partitions) of n into prime power divisors of n (not including 1).
1, 0, 1, 1, 2, 1, 2, 1, 6, 2, 2, 1, 36, 1, 2, 2, 56, 1, 90, 1, 201, 2, 2, 1, 4725, 2, 2, 20, 1085, 1, 15778, 1, 5272, 2, 2, 2, 476355, 1, 2, 2, 270084, 1, 302265, 1, 35324, 3910, 2, 1, 67279595, 2, 14047, 2, 219528, 1, 5863044, 2, 14362998, 2, 2, 1, 47466605656, 1, 2, 35662, 47350056, 2, 119762253, 1, 9479643
Offset: 0
Keywords
Examples
a(8) = 6 because 8 has 4 divisors {1, 2, 4, 8} among which 3 are prime powers > 1 {2, 4, 8} therefore we have [8], [4, 4], [4, 2, 2], [2, 4, 2], [2, 2, 4] and [2, 2, 2, 2].
Links
- Robert Israel, Table of n, a(n) for n = 0..5039
- Eric Weisstein's World of Mathematics, Prime Power
- Index entries for sequences related to compositions
Programs
-
Maple
F:= proc(n) local f,G; G:= 1/(1 - add(add(x^(f[1]^j),j=1..f[2]),f = ifactors(n)[2])); coeff(series(G,x,n+1),x,n); end proc: map(F, [$0..100]); # Robert Israel, Mar 29 2017
-
Mathematica
Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[Boole[PrimePowerQ[d[[k]]]] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 68}]
-
Python
from sympy import divisors, primefactors from sympy.core.cache import cacheit @cacheit def a(n): l=[x for x in divisors(n) if len(primefactors(x))==1] @cacheit def b(m): return 1 if m==0 else sum(b(m - j) for j in l if j <= m) return b(n) print([a(n) for n in range(71)]) # Indranil Ghosh, Aug 01 2017
Formula
a(n) = [x^n] 1/(1 - Sum_{p^k|n, p prime, k>=1} x^(p^k)).
a(n) = 1 if n is a prime.
a(n) = 2 if n is a semiprime.