A284559 a(n) = LCM of run lengths in binary representation of n.
1, 1, 1, 2, 2, 1, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 1, 2, 3, 6, 2, 2, 2, 6, 3, 4, 5, 5, 4, 3, 6, 2, 2, 2, 6, 3, 2, 1, 2, 2, 2, 3, 4, 4, 6, 2, 2, 2, 2, 2, 6, 3, 6, 3, 6, 4, 4, 5, 6, 6, 5, 4, 4, 6, 3, 6, 3, 6, 2, 2, 2, 2, 2, 6, 4, 4, 3, 2, 2, 2, 1, 2, 3, 6, 2, 2, 2, 6, 3, 4, 5, 10, 4, 6, 6, 2, 2, 2, 6, 6, 2, 2, 2, 2, 2, 6, 4, 12, 3, 6, 6, 6, 3, 6, 3
Offset: 0
Examples
For n=12, A007088(12) = "1100" in binary, the run lengths are [2,2], thus a(12) = lcm(2,2) = 2.
Links
Crossrefs
Programs
-
Python
from math import lcm from itertools import groupby def a(n): return lcm(*(len(list(g)) for k, g in groupby(bin(n)[2:]))) print([a(n) for n in range(87)]) # Michael S. Branicky, Oct 15 2022
-
Scheme
(define (A284559 n) (apply lcm (binexp->runcount1list n))) ;; Or: (define (A284559 n) (reduce lcm 1 (binexp->runcount1list n))) ;; For binexp->runcount1list, see the Program section of A227349.