A284571 Permutation of natural numbers: a(1) = 1, a(A005117(1+n)) = 2*a(n), a(A065642(1+n)) = 1 + 2*a(n).
1, 2, 4, 3, 8, 6, 16, 9, 5, 12, 32, 17, 18, 10, 24, 33, 64, 65, 34, 11, 36, 20, 48, 129, 7, 66, 19, 37, 128, 130, 68, 49, 22, 72, 40, 97, 96, 258, 14, 69, 132, 38, 74, 73, 21, 256, 260, 81, 13, 29, 136, 15, 98, 521, 44, 39, 144, 80, 194, 257, 192, 516, 23, 137, 28, 138, 264, 45, 76, 148, 146, 197, 42, 512, 147, 193, 520, 162, 26, 27
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Python
from operator import mul from sympy import primefactors from sympy.ntheory.factor_ import core def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n)) def a285328(n): if core(n) == n: return 1 k=n - 1 while k>0: if a007947(k) == a007947(n): return k else: k-=1 def a013928(n): return sum(1 for i in range(1, n) if core(i) == i) def a(n): if n==1: return 1 if core(n)==n: return 2*a(a013928(n)) else: return 1 + 2*a(a285328(n) - 1) [a(n) for n in range(1, 121)] # Indranil Ghosh, Apr 17 2017