A284600 a(n) = n/(largest prime power dividing n).
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 5, 4, 1, 2, 3, 5, 1, 6, 1, 4, 5, 2, 1, 3, 1, 2, 3, 4, 1, 2, 5, 7, 3, 2, 1, 12, 1, 2, 7, 1, 5, 6, 1, 4, 3, 10, 1, 8, 1, 2, 3, 4, 7, 6, 1, 5, 1, 2, 1, 12, 5, 2, 3, 8, 1, 10
Offset: 1
Keywords
Examples
a(12) = 3 because 12 = 2^2*3 therefore 12/(largest prime power dividing 12) = 12/4 = 3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Ilya Gutkovskiy, Extended graphical example
Crossrefs
Programs
-
Maple
f:= n -> n /max(map(t -> t[1]^t[2], ifactors(n)[2])): f(1):= 1: map(f, [$1..100]); # Robert Israel, Apr 09 2017
-
Mathematica
Join[{1}, Table[n/Last[Select[Divisors[n], PrimePowerQ[#1] &]], {n, 2, 90}]]
-
Python
from sympy import lcm def a003418(n): return 1 if n<1 else lcm(range(1, n + 1)) def a(n): m=1 while True: if a003418(m)%n==0: return m else: m+=1 print([n//a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 04 2017
Comments