cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213086 Square array read by antidiagonals: T(n,m) (n>=1, m>=0) is the number of partitions of mn that are the sum of m not necessarily distinct partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 6, 4, 1, 1, 7, 14, 10, 5, 1, 1, 11, 25, 30, 15, 6, 1, 1, 15, 53, 65, 55, 21, 7, 1, 1, 22, 89, 173, 140, 91, 28, 8, 1, 1, 30, 167, 343, 448, 266, 140, 36, 9, 1, 1, 42, 278, 778, 1022, 994, 462, 204, 45, 10, 1, 1, 56, 480, 1518, 2710, 2562, 1974, 750, 285, 55, 11, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 05 2012

Keywords

Examples

			The array begins:
  1,  1,   1,   1,    1,    1,     1,     1,     1,      1, ...
  1,  2,   3,   4,    5,    6,     7,     8,     9,     10, ...
  1,  3,   6,  10,   15,   21,    28,    36,    45,     55, ...
  1,  5,  14,  30,   55,   91,   140,   204,   285,    385, ...
  1,  7,  25,  65,  140,  266,   462,   750,  1155,   1705, ...
  1, 11,  53, 173,  448,  994,  1974,  3606,  6171,  10021, ...
  1, 15,  89, 343, 1022, 2562,  5670, 11418, 21351,  37609, ...
  1, 22, 167, 778, 2710, 7764, 19314, 43164, 88671, 170170, ...
  ...
		

Crossrefs

Main diagonal gives A284645.

Programs

  • Maple
    with(combinat):
    g:= proc(n, m) option remember;
          `if`(m>1, map(x-> map(y-> sort([x[], y[]]), g(n, 1))[],
           g(n, m-1)), `if`(m=1, map(x->map(y-> `if`(y>1, y-1, NULL), x),
           {partition(n)[]}), {[]}))
        end:
    T:= (n, m)-> nops(g(n, m)):
    seq(seq(T(d-m, m), m=0..d-1), d=1..12);  # Alois P. Heinz, Jul 11 2012
  • Mathematica
    T[n_, m_] := Module[{ip, lg, i}, ip = IntegerPartitions[n]; lg = Length[ ip]; i[0]=1; Table[Join[Sequence @@ Table[ip[[i[k]]], {k, 1, m}]] // Sort, Evaluate[Sequence @@ Table[{i[k], i[k-1], lg}, {k, 1, m}]]] // Flatten[#, m-1]& // Union // Length]; T[_, 0] = 1;
    Table[T[n-m, m], {n, 1, 12}, {m, 0, n - 1}] // Flatten (* Jean-François Alcover, May 25 2016 *)

Formula

Row n is a polynomial in m: see A213074 for the coefficients.

Extensions

More terms and cross-references from Alois P. Heinz, Jul 11 2012

A284911 Number of partitions of n^2 that are the sum of n not necessarily distinct partitions of n into distinct parts.

Original entry on oeis.org

1, 1, 1, 4, 5, 21, 84, 330, 1287, 11440, 92378, 537472, 4694482
Offset: 0

Views

Author

Alois P. Heinz, Apr 05 2017

Keywords

Examples

			a(5) = 21: 55555, 555532, 555541, 5553322, 5554321, 5554411, 55333222, 55433221, 55443211, 55444111, 533332222, 543332221, 544332211, 544432111, 544441111, 3333322222, 4333322221, 4433322211, 4443322111, 4444321111, 4444411111.
		

Crossrefs

Formula

a(n) <= binomial(A000009(n)+n-1,n) with equality only for n < 11.
Showing 1-2 of 2 results.