cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284648 Numerator of sum of reciprocals of all divisors of all positive integers <= n.

Original entry on oeis.org

1, 5, 23, 67, 407, 527, 4169, 9913, 33379, 7583, 89461, 102397, 1408777, 1532329, 8238221, 17872837, 316811189, 343357709, 6768841271, 7257705647, 7612437167, 7993370447, 189434541721, 202820113921, 1047296788661, 1090542483461, 3390610314383, 3551237180783, 105395281238707
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 31 2017

Keywords

Comments

The value of (1/n)*Sum_{k=1..n} sigma(k)/k approaches Pi^2/6.

Examples

			1, 5/2, 23/6, 67/12, 407/60, 527/60, 4169/420, 9913/840, 33379/2520, 7583/504, 89461/5544, 102397/5544, 1408777/72072, 1532329/72072, 8238221/360360, ...
		

References

  • József Sándor, Dragoslav S. Mitrinović, and Borislav Crstici, Handbook of Number Theory I, Springer, 2006, Section III.5, p. 82.
  • Arnold Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Deutscher Verlag der Wissenschaften, Berlin, 1963, p. 99.

Crossrefs

Cf. A000203, A017665, A017666, A108775, A284650 (denominators).

Programs

  • Maple
    with(numtheory): seq(numer(add(sigma(k)/k, k=1..n)), n=1..40); # Ridouane Oudra, Jan 21 2024
  • Mathematica
    Table[Numerator[Sum[DivisorSigma[-1, k], {k, 1, n}]], {n, 1, 29}]
    Table[Numerator[Sum[DivisorSigma[1, k]/k, {k, 1, n}]], {n, 1, 29}]
    nmax = 29; Rest[Numerator[CoefficientList[Series[1/(1 - x) Sum[Log[1/(1 - x^k)], {k, 1, nmax}], {x, 0, nmax}], x]]]
  • PARI
    for(n=1, 29, print1(numerator(sum(k=1, n, sigma(k)/k)),", ")) \\ Indranil Ghosh, Mar 31 2017
    
  • Python
    from sympy import divisor_sigma, Integer
    print([sum(divisor_sigma(k)/Integer(k) for k in range(1, n + 1)).numerator for n in range(1, 30)]) # Indranil Ghosh, Mar 31 2017

Formula

G.f.: (1/(1 - x))*Sum_{k>=1} log(1/(1 - x^k)) (for a(n)/A284650(n), see example).
a(n) = numerator of Sum_{k=1..n} Sum_{d|k} 1/d.
a(n) = numerator of Sum_{k=1..n} sigma(k)/k.
a(n) = numerator of Sum_{k=1..n} floor(n/k)/k. - Ridouane Oudra, Jan 21 2024