cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284650 Denominator of sum of reciprocals of all divisors of all positive integers <= n.

Original entry on oeis.org

1, 2, 6, 12, 60, 60, 420, 840, 2520, 504, 5544, 5544, 72072, 72072, 360360, 720720, 12252240, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 31 2017

Keywords

Examples

			1, 5/2, 23/6, 67/12, 407/60, 527/60, 4169/420, 9913/840, 33379/2520, 7583/504, 89461/5544, 102397/5544, 1408777/72072, 1532329/72072, 8238221/360360, ...
		

Crossrefs

Cf. A000203, A017665, A017666, A108775, A284648 (numerators).

Programs

  • Maple
    with(numtheory): seq(denom(add(sigma(k)/k, k=1..n)), n=1..40); # Ridouane Oudra, Jan 21 2024
  • Mathematica
    Table[Denominator[Sum[DivisorSigma[-1, k], {k, 1, n}]], {n, 1, 29}]
    Table[Denominator[Sum[DivisorSigma[1, k]/k, {k, 1, n}]], {n, 1, 29}]
    nmax = 29; Rest[Denominator[CoefficientList[Series[1/(1 - x) Sum[Log[1/(1 - x^k)], {k, 1, nmax}], {x, 0, nmax}], x]]]
  • PARI
    for(n=1, 29, print1(denominator(sum(k=1, n, sigma(k)/k)),", ")) \\ Indranil Ghosh, Mar 31 2017
    
  • Python
    from sympy import divisor_sigma, Integer
    print([sum(divisor_sigma(k)/Integer(k) for k in range(1, n + 1)).denominator for n in range(1, 30)]) # Indranil Ghosh, Mar 31 2017

Formula

G.f.: (1/(1 - x))*Sum_{k>=1} log(1/(1 - x^k)) (for A284648(n)/a(n), see example).
a(n) = denominator of Sum_{k=1..n} Sum_{d|k} 1/d.
a(n) = denominator of Sum_{k=1..n} sigma(k)/k.
a(n) = denominator of Sum_{k=1..n} floor(n/k)/k. - Ridouane Oudra, Jan 21 2024