cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284709 Number of maximal matchings in the wheel graph on n nodes.

Original entry on oeis.org

2, 1, 4, 3, 10, 10, 20, 28, 42, 63, 92, 132, 194, 273, 394, 555, 786, 1105, 1550, 2166, 3022, 4200, 5832, 8073, 11162, 15400, 21218, 29187, 40098, 55013, 75392, 103199, 141122, 192786, 263128, 358820, 488918, 665667, 905656, 1231308, 1672962, 2271605
Offset: 1

Views

Author

Eric W. Weisstein, Apr 01 2017

Keywords

Comments

Linear recurrence used to extrapolate to a(1), a(2), a(3).

Crossrefs

Cf. A000931.

Programs

  • Maple
    A000931 := proc(n) option remember; if n = 0 then 1 elif n <= 2 then 0 else procname(n-2)+procname(n-3); fi; end;
    psi:=n->A000931(n+6);
    f:=n->n*psi(n-2)+1+(-1)^n;
    [seq(f(n),n=0..40)]; # Produces the sequence with an offset of 0 - N. J. A. Sloane, Apr 24 2017
  • Mathematica
    LinearRecurrence[{0, 3, 2, -3, -4, 0, 2, 1}, {2, 1, 4, 3, 10, 10, 20, 28, 42, 63, 92}, 37] (* Eric W. Weisstein, Apr 01 2017 *)
    Padovan[n_] := RootSum[-1 - # + #^3 &, 5 #^n - 6 #^(n + 1) + 4 #^(n + 2) &]/23; Table[(n - 1) Padovan[n + 3] - (-1)^n + 1, {n, 20}] (* Eric W. Weisstein, Dec 30 2017 *)
    CoefficientList[Series[(-2 - x + 2 x^2 + 4 x^3 - 2 x^4 - 4 x^5 + x^7)/((-1 + x^2) (-1 + x^2 + x^3)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 30 2017 *)
  • PARI
    Vec(x*(2 + x - 2*x^2 - 4*x^3 + 2*x^4 + 4*x^5 - x^7) / ((1 - x)*(1 + x)*(1 - x^2 - x^3)^2) + O(x^50)) \\ Colin Barker, Apr 25 2017

Formula

a(n) = 3*a(n-2) + 2*a(n-3) - 3*a(n-4) - 4*a(n-5) + 2*a(n-7) + a(n-8).
G.f.: (x*(-2 - x + 2*x^2 + 4*x^3 - 2*x^4 - 4*x^5 + x^7))/((-1 + x^2)*(-1 + x^2 + x^3)^2).
a(n) = (n-1)*Padovan(n+3)+1-(-1)^n, where Padovan(k) = A000931(k). (Eee Doslic et al.) - N. J. A. Sloane, Apr 24 2017