A284711 Even bisection of A283848.
23, 86, 339, 1332, 5298, 21066, 83987, 334966, 1336988, 5338206, 21321234, 85176636, 340338398, 1360073016, 5435820051, 21727481616, 86853790498, 347214198246, 1388133456348, 5549915835836, 22190143855898, 88725807876186, 354775752246802, 1418633882621748, 5672803378074548
Offset: 2
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 2..1659
- Shinsaku Fujita, alpha-beta Itemized Enumeration of Inositol Derivatives and m-Gonal Homologs by Extending Fujita's Proligand Method, Bull. Chem. Soc. Jpn. 2017, 90, 343-366; doi:10.1246/bcsj.20160369. See Table 8.
Crossrefs
Programs
-
Maple
f:= proc(n) uses numtheory; (4*n)^(-1)*add(phi(d)*4^(2*n/d),d=select(type,divisors(2*n),even))+5*2^(2*n-2) end proc: map(f, [$2..40]);
-
PARI
A(m,n) = if (m%2, 2^((m-1)/2)*n^((m+1)/2), sumdiv(m, d, ((d%2)==0)*(eulerphi(d)*2^(m/d)*n^(m/d)))/(2*m) + 2^(m/2-2)*n^(m/2)*(2*n+1)); lista(nn) = for(n=2, nn, print1(T(2*n, 2), ", ")) \\ Michel Marcus, Apr 02 2017
Formula
a(n) = A283848(2*n)=(4*n)^(-1)*Sum_{d|2*n, d even} phi(d)*4^(2*n/d) + 5*2^(2*n-2). - Robert Israel, Aug 23 2018 after Fujita (2017), Eq. (101)
Extensions
More terms from Michel Marcus, Apr 02 2017
Edited by Robert Israel, Aug 23 2018