cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284748 Decimal expansion of the sum of reciprocals of composite powers.

Original entry on oeis.org

2, 2, 6, 8, 4, 3, 3, 3, 0, 9, 5, 0, 2, 0, 4, 8, 7, 2, 1, 3, 5, 6, 3, 2, 5, 4, 0, 1, 4, 4, 0, 5, 7, 6, 0, 4, 3, 8, 1, 2, 5, 8, 6, 6, 3, 9, 1, 6, 8, 1, 3, 9, 5, 1, 6, 8, 8, 9, 9, 3, 9, 3, 2, 6, 4, 3, 2, 9, 0, 9, 7, 1, 5, 1, 0, 7, 6, 6, 6, 0, 2, 1, 6, 6, 2, 0, 1, 2, 4, 1, 1, 7, 6, 6, 7, 9, 1, 8, 1, 6, 7, 1, 0, 6, 2, 1
Offset: 0

Views

Author

Terry D. Grant, Apr 01 2017

Keywords

Examples

			Equals 1/(4*3)+1/(6*5)+1/(8*7)+1/(9*8)+1/(10*9)+...
= 0.226843330950204872135632540144057604...
		

Crossrefs

Decimal expansion of the sum of reciprocal powers: A136141 (primes), A154945 (primes at even powers), A152447 (semiprimes), A154932 (squarefree semiprimes).
Decimal expansion of the 'nonprime zeta function': A275647 (at 2), A278419 (at 3).

Programs

  • Mathematica
    RealDigits[ NSum[Zeta[n]-1-PrimeZetaP[n], {n, 2, Infinity}], 10, 105] [[1]]
  • PARI
    1 - sumeulerrat(1/(p*(p-1))) \\ Amiram Eldar, Mar 18 2021

Formula

Equals Sum_{n>=1} 1/A002808(n)^(n+1) = (A275647 - 1) + (A278419 - 1) + ...
Equals Sum_{n>=1} 1/A002808(n)*(A002808(n)-1).
Equals Sum_{n>=2} (Zeta(n) - PrimeZeta(n) - 1) = Sum_{n>=2} CompositeZeta(n).
Equals 1 - A136141.

Extensions

More digits from Vaclav Kotesovec, Jan 13 2021