cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A284889 Numbers n such that A279513(n) is a primorial number (A002110).

Original entry on oeis.org

1, 2, 6, 8, 9, 30, 40, 45, 75, 96, 210, 250, 280, 315, 486, 525, 672, 735, 1750, 1920, 2310, 3080, 3402, 3430, 3465, 5775, 6125, 7392, 8085, 8575, 10976, 11907, 12705, 15625, 16000, 19250, 21120, 21870, 30030, 31104, 32768, 37422, 37730, 40040, 45045, 54675
Offset: 1

Views

Author

Rémy Sigrist, Apr 05 2017

Keywords

Comments

Also numbers with the k first prime numbers in their prime tower factorization, without duplicate, for some k (see A182318 for the definition of the prime tower factorization of a number).
This sequence contains the primorial numbers (A002110); 8 = 2^3 is the first term in this sequence that is not a primorial number.
This sequence contains A260548.
All terms belong to A284763.
If a(n) <= p# for some prime p, then a(n) is p-smooth (p# denotes the product of the primes <= p, see A002110).
There are A000272(k+1) terms with k prime numbers in their prime tower factorization:
- for k=0: 1,
- for k=1: 2,
- for k=2: 2*3, 2^3, 3^2,
- for k=3: 2*3*5, 2^3*5, 2^5*3, 3^2*5, 3^5*2, 5^2*3, 5^3*2, 2^(3*5), 3^(2*5), 5^(2*3), 2^3^5, 2^5^3, 3^2^5, 3^5^2, 5^2^3, 5^3^2.

Examples

			1626625 = 5^3*7*11*13^2 appears in this sequence.
		

Crossrefs

Programs

  • PARI
    isprimorial(n) = if (n==1, 1, my (f=factor(n)); (#f~ == primepi(vecmax(f[,1]))) && (vecmax(f[,2]) == 1));
    a279513(n) =  my (f=factor(n)); prod(i=1, #f~, f[i, 1]*a279513(f[i, 2]));
    isok(n) = isprimorial(a279513(n)); \\ Michel Marcus, Apr 08 2017
Showing 1-1 of 1 results.