A284786 Pisano period of sequence A006054 modulo n.
1, 7, 26, 14, 62, 182, 42, 28, 78, 434, 266, 182, 12, 42, 806, 56, 614, 546, 254, 434, 546, 266, 1106, 364, 310, 84, 234, 42, 28, 5642, 1986, 112, 3458, 4298, 1302, 546, 2814, 1778, 156, 868, 40, 546, 42, 266, 2418, 1106, 4514, 728, 294, 2170, 7982, 84, 5726, 1638, 8246, 84, 3302, 28, 7082, 5642, 582
Offset: 1
Keywords
Links
- Robert Israel, Mathematics StackExchange, When does x^3-x^2-2x+1 split mod p.
- Wikipedia, Pisano period.
Programs
-
Maple
f:= proc(n) option remember; local F, t, k, a; F:= ifactors(n)[2]; if nops(F) > 1 then return(ilcm(seq(procname(t[1]^t[2]),t=F))) fi; a:= [0,0,1]; for k from 1 do a:= [a[2],a[3],2*a[3]+a[2]-a[1] mod n]; if a = [0,0,1] then return k fi; od: end proc: f(1):= 1: map(f, [$1..100]); # Robert Israel, Jun 14 2017
-
Mathematica
Table[FindTransientRepeat[ Mod[LinearRecurrence[{2, 1, -1}, {0, 0, 1}, 100000], n], 2] // Last // Length, {n, 1, 20}]
Formula
From Robert Israel, Jun 14 2017: (Start)
If m and n are coprime, a(m*n) = lcm(a(m),a(n)).
If p is a prime such that the polynomial x^3-x^2-2*x+1 splits into distinct factors mod p, then a(p) divides p-1. These primes are A045472. (End)
Extensions
More terms from Robert Israel, Jun 14 2017