A284825 Number of partitions of n into 3 parts without common divisors such that every pair of them has common divisors.
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 3, 0, 5, 0, 0, 0, 1, 0, 5, 0, 1, 0, 6, 0, 6, 0, 0, 0, 4, 0, 6, 0, 0, 0, 9, 0, 2, 1, 2, 0, 9, 0, 8, 1, 1, 0, 5, 0, 14, 0, 1, 0, 15, 0, 14, 0, 0, 1, 14, 0, 14, 0, 2, 0, 15, 0, 6, 1, 2, 1, 11, 0, 18, 1, 1, 0, 10, 0, 23
Offset: 31
Examples
a(31) = 1: [6,10,15] = [2*3,2*5,3*5]. a(41) = 2: [6,14,21], [6,15,20]. From _Gus Wiseman_, Oct 14 2020: (Start) Selected terms and the corresponding triples: a(31)=1: a(41)=2: a(59)=3: a(77)=4: a(61)=5: a(71)=6: ------------------------------------------------------------- 15,10,6 20,15,6 24,20,15 39,26,12 33,22,6 39,26,6 21,14,6 24,21,14 42,20,15 40,15,6 45,20,6 35,14,10 45,20,12 45,10,6 50,15,6 50,15,12 28,21,12 35,21,15 36,15,10 36,20,15 36,21,14 (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 31..10000
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; add(add(`if`(igcd(i, j)>1 and igcd(i, j, n-i-j)=1 and igcd(i, n-i-j)>1 and igcd(j, n-i-j)>1, 1, 0), j=i..(n-i)/2), i=2..n/3) end: seq(a(n), n=31..137);
-
Mathematica
a[n_] := a[n] = Sum[Sum[If[GCD[i, j] > 1 && GCD[i, j, n - i - j] == 1 && GCD[i, n - i - j] > 1 && GCD[j, n - i - j] > 1, 1, 0], {j, i, (n - i)/2} ], {i, 2, n/3}]; Table[a[n], {n, 31, 137}] (* Jean-François Alcover, Jun 13 2018, from Maple *) stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2]; Table[Length[Select[IntegerPartitions[n,{3}],GCD@@#==1&&stabQ[#,CoprimeQ]&]],{n,31,100}] (* Gus Wiseman, Oct 14 2020 *)
Comments