A284829 Expansion of Sum_{i>=1} mu(i)^2*x^i/(1 - x^i) * Product_{j>=i} 1/(1 - mu(j)^2*x^j), where mu() is the Moebius function (A008683).
1, 3, 5, 9, 13, 23, 30, 45, 64, 89, 118, 165, 211, 282, 369, 475, 606, 779, 978, 1236, 1547, 1922, 2375, 2936, 3602, 4403, 5362, 6506, 7864, 9493, 11399, 13661, 16317, 19443, 23122, 27415, 32418, 38268, 45065, 52968, 62125, 72742, 84969, 99112, 115409, 134139, 155665, 180368, 208658, 241051
Offset: 1
Keywords
Examples
a(5) = 13 because we have [5], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1] and 1 + 1 + 2 + 1 + 3 + 5 = 13.
Programs
-
Mathematica
nmax = 50; Rest[CoefficientList[Series[Sum[MoebiusMu[i]^2 x^i/(1 - x^i) Product[1/(1 - MoebiusMu[j]^2 x^j), {j, i, nmax}], {i, 1, nmax}], {x, 0, nmax}], x]]
-
PARI
x='x+O('x^50); Vec(sum(i=1, 50, moebius(i)^2*x^i/(1 - x^i) * prod(j=i, 50, 1/(1 - moebius(j)^2*x^j)))) \\ Indranil Ghosh, Apr 04 2017
Formula
G.f.: Sum_{i>=1} mu(i)^2*x^i/(1 - x^i) * Product_{j>=i} 1/(1 - mu(j)^2*x^j).
Comments