A284841 Number of primitive (aperiodic) palindromic structures of length n using an infinite alphabet.
1, 0, 1, 1, 4, 3, 14, 13, 50, 47, 202, 197, 876, 862, 4134, 4125, 21146, 21092, 115974, 115922, 678554, 678367, 4213596, 4213381, 27644432, 27643560, 190899270, 190898444, 1382958544, 1382954355, 10480142146, 10480138007, 82864869600, 82864848657
Offset: 1
Keywords
Examples
n = 1: a => 1 n = 3: aba => 1 n = 4: abba => 1 n = 5: aabaa, ababa, abbba, abcba => 4 n = 6: aabbaa, abbbba, abccba => 3
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
a[n_] := DivisorSum[n, MoebiusMu[n/#] BellB[Ceiling[#/2]]&]; Array[a, 34] (* Jean-François Alcover, Jun 06 2017 *)
-
PARI
bell(n) = sum(k=0,n,stirling(n,k,2)); a(n) = sumdiv(n,d, moebius(n/d) * bell(ceil(d/2)));
Formula
a(n) = Sum_{k=1..ceiling(n/2)} A284826(n,k).
a(n) = Sum_{d | n} mu(n/d) * Bell(ceiling(d/2)).
Comments