cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284841 Number of primitive (aperiodic) palindromic structures of length n using an infinite alphabet.

Original entry on oeis.org

1, 0, 1, 1, 4, 3, 14, 13, 50, 47, 202, 197, 876, 862, 4134, 4125, 21146, 21092, 115974, 115922, 678554, 678367, 4213596, 4213381, 27644432, 27643560, 190899270, 190898444, 1382958544, 1382954355, 10480142146, 10480138007, 82864869600, 82864848657
Offset: 1

Views

Author

Andrew Howroyd, Apr 03 2017

Keywords

Comments

Permuting the symbols will not change the structure.

Examples

			n = 1: a => 1
n = 3: aba => 1
n = 4: abba => 1
n = 5: aabaa, ababa, abbba, abcba => 4
n = 6: aabbaa, abbbba, abccba => 3
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Row sums of A284826.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] BellB[Ceiling[#/2]]&];
    Array[a, 34] (* Jean-François Alcover, Jun 06 2017 *)
  • PARI
    bell(n) = sum(k=0,n,stirling(n,k,2));
    a(n) = sumdiv(n,d, moebius(n/d) * bell(ceil(d/2)));

Formula

a(n) = Sum_{k=1..ceiling(n/2)} A284826(n,k).
a(n) = Sum_{d | n} mu(n/d) * Bell(ceiling(d/2)).