A284844 Number of permutations on [n+3] with no circular 3-successions.
16, 70, 384, 2534, 19424, 169254, 1650160, 17784646, 209855856, 2689946246, 37210700576, 552433526310, 8759992172224, 147751562532454, 2641055171379984, 49869279287055494, 991843699479853520, 20724299315437752006, 453861919477920665536, 10395594941305558134886
Offset: 1
Keywords
Examples
a(2)=70 since there are 70 permutations in S5 with no circular 3-succession, i.e., permutations that avoid substrings {14,25} such as 25134 or 51342.
Links
- Enrique Navarrete, Generalized K-Shift Forbidden Substrings in Permutations, arXiv:1610.06217 [math.CO], 2016.
Programs
-
Maple
A284844 := proc(n) local j; add( (-1)^j*binomial(n,j)*(n-j+2)!,j=0..n) ; %*(n+3) ; end proc: seq(A284844(n),n=1..20) ; # R. J. Mathar, Jul 15 2017
-
Mathematica
a[n_] := ((n+3)*((n*(n+5)+5)*Subfactorial[n+2]+(-1)^(n+1)*(n+1)))/((n+2)*(n+1)); Array[a, 20] (* Jean-François Alcover, Dec 09 2017 *)
Formula
a(n) = (n+3)* Sum_{j=0..n} (-1)^j*binomial(n,j)*(n-j+2)!.
Conjecture: a(n) = (n+3)*A055790(n+1). - R. J. Mathar, Jul 15 2017
Comments