A284979 Array a(m, n) giving the number of reversible strings with n beads of m colors, read by antidiagonals.
1, 1, 2, 1, 3, 3, 1, 6, 6, 4, 1, 10, 18, 10, 5, 1, 20, 45, 40, 15, 6, 1, 36, 135, 136, 75, 21, 7, 1, 72, 378, 544, 325, 126, 28, 8, 1, 136, 1134, 2080, 1625, 666, 196, 36, 9, 1, 272, 3321, 8320, 7875, 3996, 1225, 288, 45, 10
Offset: 1
Examples
Array begins: 1 1 1 1 1 1 1 1 1 ... 2 3 6 10 20 36 72 136 272 ... 3 6 18 45 135 378 1134 3321 9963 ... 4 10 40 136 544 2080 8320 32896 131584 ... 5 15 75 325 1625 7875 39375 195625 978125 ... 6 21 126 666 3996 23436 140616 840456 5042736 ... 7 28 196 1225 8575 58996 412972 2883601 20185207 ... 8 36 288 2080 16640 131328 1050624 8390656 67125248 ... 9 45 405 3321 29889 266085 2394765 21526641 193739769 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Transpose of A277504.
Programs
-
Mathematica
a[n_, k_] := (k^n + k^((n + Mod[n, 2])/2))/2; Table[a[k - n + 1, n], {k, 1, 10}, {n, 1, k}] // Flatten (* Jean-François Alcover, Oct 01 2017 *)
Formula
a(m, n) = (m^n + m^((n + mod(n,2))/2))/2.
Comments