A284993 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1+x^j)^(j^k) in powers of x.
1, 1, -1, 1, -1, 0, 1, -1, -1, -1, 1, -1, -3, -2, 1, 1, -1, -7, -6, 1, -1, 1, -1, -15, -20, 0, 0, 1, 1, -1, -31, -66, -8, 11, 4, -1, 1, -1, -63, -212, -54, 99, 42, 2, 2, 1, -1, -127, -666, -284, 725, 455, 63, 8, -2, 1, -1, -255, -2060, -1350, 4935, 4580, 958, 73
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... -1, -1, -1, -1, -1, -1, ... 0, -1, -3, -7, -15, -31, ... -1, -2, -6, -20, -66, -212, ... 1, 1, 0, -8, -54, -284, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Formula
G.f. of column k: Product_{j>=1} 1/(1+x^j)^(j^k).