cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285016 Primes of the form p*b^b - 1, where p is a prime and b>1.

Original entry on oeis.org

7, 11, 19, 43, 53, 67, 163, 211, 283, 331, 523, 547, 691, 787, 907, 1051, 1123, 1171, 1279, 1531, 1723, 1867, 2011, 2083, 2251, 2347, 2371, 2467, 2707, 2731, 2803, 2971, 3187, 3307, 3547, 3643, 3907, 3931, 4051, 4243, 4363, 4603, 4651, 4723, 5107, 5227
Offset: 1

Views

Author

Vincenzo Librandi, May 12 2017

Keywords

Examples

			a(1) = 2*(2^2)-1 = 7.
a(2) = 3*(2^2)-1 = 11.
a(3) = 5*(2^2)-1 = 19.
a(4) = 11*(2^2)-1 = 43.
		

Crossrefs

Programs

  • Mathematica
    nmax=10^4; pimax=PrimePi[nmax]; bmax=1;While[(bmax+1)^(bmax+1)<=nmax,bmax++]; Select[Union@Flatten@Table[Prime[pi] b^b-1,{b,2,bmax},{pi,pimax}],PrimeQ[#]&&#<=nmax&]
  • PARI
    is(n)=for(b=2,oo, my(B=b^b); if((n+1)%B==0 && isprime((n+1)/B), return(isprime(n))); if(2*B+1>n, return(0))) \\ Charles R Greathouse IV, Jun 16 2022
    
  • PARI
    list(lim)=my(v=List()); lim\=1; for(b=2,oo, my(p=2*b^b-1); if(p>lim, break); if(isprime(p), listput(v,p))); forstep(b=2,oo,2, my(B=b^b); if(3*B-1>lim, break); forprime(q=3,(lim+1)\B, my(p=q*B-1); if(isprime(p), listput(v,p)))); Set(v) \\ Charles R Greathouse IV, Jun 16 2022