A285017 Primes of the form 1 + n + n^2 + n^3 + ... + n^k, n > 1, k > 1 where n is not prime.
43, 73, 157, 211, 241, 421, 463, 601, 757, 1123, 1483, 2551, 2971, 3307, 3907, 4423, 4831, 5701, 6007, 6163, 6481, 8191, 9901, 11131, 12211, 12433, 13807, 14281, 19183, 20023, 20593, 21757, 22621, 22651, 23563, 24181, 26083, 26407, 27061, 28393, 31153, 35533
Offset: 1
Keywords
Examples
157 = 12^2 + 12 + 1 = 111_12 is prime and 12 is composite.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..1310 from Robert G. Wilson v)
- Bernard Schott, Les nombres brésiliens, Reprinted from Quadrature, no. 76, April-June 2010, pages 30-38, included here with permission from the editors of Quadrature.
Crossrefs
Programs
-
Maple
N:= 40000: # to get all terms <= N res:= NULL: for k from 2 to ilog2(N) do if isprime(k) then for n from 2 do p:= (n^(k+1)-1)/(n-1); if p > N then break fi; if isprime(p) and not isprime(n) then res:= res, p fi od fi od: res:= {res}: sort(convert(res,list)); # Robert Israel, Apr 14 2017
-
Mathematica
mx = 36000; g[n_] := Select[Drop[Accumulate@Table[n^ex, {ex, 0, Log[n, mx]}], 2], PrimeQ]; k = 1; lst = {}; While[k < Sqrt@mx, If[CompositeQ@k, AppendTo[lst, g@k]; lst = Sort@Flatten@lst]; k++]; lst (* Robert G. Wilson v, Apr 15 2017 *)
-
PARI
isok(n) = {if (isprime(n), forcomposite(b=2, n, d = digits(n, b); if ((#d > 2) && (vecmin(d) == 1) && (vecmax(d)== 1), return(1)););); return(0);} \\ Michel Marcus, Apr 09 2017
-
PARI
A285017_vec(n)={my(h=vector(n,i,1),y,c,z=4,L:list);L=List();forprime(x=3,,forcomposite(m=z,x-1,y=digits(x,m);if((y==h[1..#y])&&2<#y,listput(L,x);z=m;if(c++==n,return(Vec(L))))))} \\ R. J. Cano, Apr 18 2017
Comments