A285048 Expansion of Product_{k>=0} 1/(1-x^(4*k+1))^(4*k+1).
1, 1, 1, 1, 1, 6, 6, 6, 6, 15, 30, 30, 30, 43, 88, 123, 123, 140, 250, 385, 455, 476, 678, 1098, 1413, 1564, 1913, 2918, 4048, 4707, 5452, 7572, 10747, 13265, 15195, 19534, 27349, 35146, 41042, 50011, 67596, 88897, 106519, 126635, 164230, 216862, 266473, 314883
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..2000 from Vaclav Kotesovec)
Crossrefs
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[1/(1-x^(4*k-3))^(4*k-3), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Apr 16 2017 *)
Formula
a(n) ~ 4 * Pi * 2^(25/72) * Zeta(3)^(11/72) * exp(4*c + 3 * 2^(-4/3) * Zeta(3)^(1/3) * n^(2/3)) / (sqrt(3) * Gamma(1/4)^3 * n^(47/72)), where c = Integral_{x=0..inf} ((-19/(exp(x)*96) + 1/(exp(x)*(1 - exp(-4*x))^2) - 1/(16*x^2) - 3/(16*x))/x) dx = 0.09601010361866957956805888476415949391295401812706635... - Vaclav Kotesovec, Apr 16 2017