cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A285058 Numbers k such that k = A104714(A285057(k)).

Original entry on oeis.org

1, 2, 5, 7, 10, 12, 13, 17, 24, 25, 26, 29, 34, 35, 36, 37, 38, 43, 47, 48, 49, 50, 53, 55, 58, 59, 60, 65, 67, 72, 73, 74, 85, 89, 91, 96, 97, 103, 106, 108, 109, 110, 113, 118, 120, 125, 127, 130, 137, 139, 144, 145, 146, 149, 156, 157, 158, 163, 168, 169, 170, 173, 175
Offset: 1

Views

Author

Michel Marcus, Apr 09 2017

Keywords

Comments

The set of distinct values of A104714.
Leonetti & Sanna prove that this sequence is the image of A104714 for n >= 1.
Leonetti & Sanna prove that this sequence has density 0 and a(n) << n log n. - Charles R Greathouse IV, May 08 2017

Crossrefs

Programs

  • Mathematica
    z[n_]:=Block[{k=1}, While[Mod[Fibonacci[k], n]!=0, k ++]; k]; l[n_]:=LCM[n, z[n]]; g[n_]:= GCD[n, Fibonacci[n]]; Select[Range[200], #==g[l[#]] &] (* Indranil Ghosh, Apr 09 2017 *)
  • PARI
    z(n)=my(k = 1); while (fibonacci(k) % n, k++); k; \\ A001177
    l(n) = lcm(n, z(n)); \\ A285057
    g(n) = gcd(n, fibonacci(n)); \\ A104714
    isok(n) = n == g(l(n));
    
  • PARI
    zp(p)=my(k=p+[0,-1,1,1,-1][p%5+1],f=factor(k)); for(i=1,#f[,1], for(j=1,f[i,2], if((Mod([1,1;1,0],p)^(k/f[i,1]))[1,2], break); k/=f[i,1])); k
    z(n)=if(n==1,return(1)); my(f=factor(n),v); v=vector(#f~,i, if(f[i,1]>1e14, zp(f[i,1]^f[i,2]), zp(f[i,1])*f[i,1]^(f[i,2]-1))); if(f[1,1]==2&&f[1,2]>1, v[1]=3<Charles R Greathouse IV, May 08 2017
    
  • Python
    from sympy import fibonacci, gcd, lcm
    def z(n):
        k=1
        while fibonacci(k)%n: k+=1
        return k
    def l(n): return lcm(n, z(n))
    def g(n): return gcd(n, fibonacci(n))
    print([n for n in range(1, 201) if n==g(l(n))]) # Indranil Ghosh, Apr 09 2017
Showing 1-1 of 1 results.