A285068 Denominators of the generalized Bernoulli numbers B[3,1] = 3^n*B(n, 1/3).
1, 2, 2, 1, 10, 1, 14, 1, 10, 1, 22, 1, 910, 1, 2, 1, 170, 1, 266, 1, 110, 1, 46, 1, 910, 1, 2, 1, 290, 1, 4774, 1, 170, 1, 2, 1, 639730, 1, 2, 1, 4510, 1, 602, 1, 230, 1, 94, 1, 15470, 1, 22
Offset: 0
Examples
The Bernoulli numbers r(n) = B[3,1](n) begin: 1, -1/2, -1/2, 1, 13/10, -5, -121/14, 49, 1093/10, -809, -49205/22, 20317, 61203943/910, -722813, -5580127/2, 34607305, ... The Bernoulli numbers B[3,2](n) begin: 1, 1/2, -1/2, -1, 13/10, 5, -121/14, -49, 1093/10, 809, -49205/22, -20317, 61203943/910, 722813, -5580127/2, -34607305, ... From _Peter Luschny_, Mar 26 2021: (Start) The generalized Bernoulli numbers as given in the Luschny link are different. 1, -7/2, 23/2, -35, 973/10, -245, 7943/14, -1295, 31813/10, -7721, 288715/22, -13475, 128296423/910, -882557, -4891999/2, 33870025, ... The numerators of these numbers are in A157811. (End)
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..500
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
- Peter Luschny, Generalized Bernoulli numbers.
Crossrefs
Programs
-
Mathematica
Table[Denominator[3^n*BernoulliB[n, 1/3]], {n, 0, 100}] (* Indranil Ghosh, Jul 18 2017 *)
-
PARI
a(n) = denominator(3^n * bernfrac(n)); \\ Ruud H.G. van Tol, Jan 31 2024
-
Python
from sympy import bernoulli, Rational def a(n): return (3**n * bernoulli(n, Rational(1,3))).as_numer_denom()[1] print([a(n) for n in range(101)]) # Indranil Ghosh, Jul 18 2017
-
SageMath
# uses [gen_bernoulli_number from A157811] print([denominator((-1)^n*gen_bernoulli_number(n, 3)) for n in range(23)]) # Peter Luschny, Mar 26 2021
Comments