cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A285109 a(n) = n multiplied by its smallest prime factor; a(1) = 1.

Original entry on oeis.org

1, 4, 9, 8, 25, 12, 49, 16, 27, 20, 121, 24, 169, 28, 45, 32, 289, 36, 361, 40, 63, 44, 529, 48, 125, 52, 81, 56, 841, 60, 961, 64, 99, 68, 175, 72, 1369, 76, 117, 80, 1681, 84, 1849, 88, 135, 92, 2209, 96, 343, 100, 153, 104, 2809, 108, 275, 112, 171, 116, 3481, 120, 3721, 124, 189, 128, 325, 132, 4489, 136, 207
Offset: 1

Views

Author

Antti Karttunen, Apr 19 2017

Keywords

Crossrefs

Differs from A065642 for the first time at n=12. See A284342 for all the differing points.

Programs

  • Mathematica
    a[n_] := n * FactorInteger[n][[1, 1]]; Array[a, 100] (* Amiram Eldar, Jun 30 2022 *)
  • PARI
    a(n)=if(n==1, 1, n*factor(n)[1,1]); \\ Joerg Arndt, Oct 27 2021
  • Scheme
    (define (A285109 n) (* (A020639 n) n))
    

Formula

a(n) = A020639(n) * n.
Other identities. For all n >= 1:
a(A285100(n)) = A065642(A285100(n)). [Agrees with A065642 on all terms of A285100, but not on any other points.]

A284342 Numbers n such that A065642(n) < n*lpf(n), where lpf = least prime factor (A020639).

Original entry on oeis.org

12, 18, 24, 36, 40, 45, 48, 50, 54, 56, 60, 63, 72, 75, 80, 84, 90, 96, 98, 100, 108, 112, 120, 126, 132, 135, 144, 147, 150, 156, 160, 162, 168, 175, 176, 180, 189, 192, 196, 198, 200, 204, 208, 216, 224, 225, 228, 234, 240, 242, 245, 250, 252, 264, 270, 275, 276, 280, 288, 294, 297, 300
Offset: 1

Views

Author

Gionata Neri, Mar 25 2017

Keywords

Comments

Numbers n for which A065642(n) < A285109(n). Positions of terms > 1 in A285337. - Antti Karttunen, Apr 19 2017
For any n in this sequence, k*n is also in this sequence. No term is squarefree. For any distinct primes p and q with p > q, p^2*q and p*q^(ceiling(log_q(p))) are in this sequence. - Charlie Neder, Oct 29 2018

Crossrefs

Cf. A007947, A020639, A065642, A285100 (complement), A285109, A285337.

Programs

  • Mathematica
    Select[Range[2, 300], Function[{n, c, lpf}, SelectFirst[Range[n + 1, n^2], Times @@ FactorInteger[#][[All, 1]] == c &] < n lpf] @@ {#1, Times @@ #2, #2[[1]]} & @@ {#, FactorInteger[#][[All, 1]]} &] (* Michael De Vlieger, Oct 31 2018 *)
  • PARI
    for(n=1,300,for(k=1,n^2-n,a=factorback(factorint(n)[,1]); b=factorback(factorint(n+k)[,1]); c=vecmin(factor(n)[,1]); if(a==b&&n+k
    				
  • PARI
    A020639(n) = if(1==n,n,vecmin(factor(n)[, 1]));
    A007947(n) = factorback(factorint(n)[, 1]); \\ From Andrew Lelechenko, May 09 2014
    A065642(n) = { my(r=A007947(n)); if(1==n,n,n = n+r; while(A007947(n) <> r, n = n+r); n); };
    isA284342(n) = (A065642(n) < n*A020639(n));
    n=0; k=1; while(k <= 10000, n=n+1; if(isA284342(n),write("b284342.txt", k, " ", n);k=k+1));
    \\ Antti Karttunen, Apr 19 2017
    
  • Python
    from operator import mul
    from sympy import primefactors
    from functools import reduce
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a065642(n):
        if n==1: return 1
        r=a007947(n)
        n = n + r
        while a007947(n)!=r:
            n+=r
        return n
    print([n for n in range(10, 301) if a065642(n)Indranil Ghosh, Apr 20 2017

A285337 a(n) = denominator of A065642(n)/n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 3, 1, 1, 8, 1, 5, 1, 1, 1, 3, 1, 4, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 8, 1, 7, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Apr 19 2017

Keywords

Crossrefs

Cf. A065642, A285100 (positions of ones), A284342 (positions of terms > 1).
Cf. A285336 for the numerator.

Programs

  • Python
    from sympy import primefactors, prod, Integer
    def a007947(n): return 1 if n<2 else prod(primefactors(n))
    def a065642(n):
        if n==1: return 1
        r=a007947(n)
        n += r
        while a007947(n)!=r:
            n+=r
        return n
    def a(n): return (a065642(n)/Integer(n)).denominator # Indranil Ghosh, Apr 20 2017
  • Scheme
    (define (A285337 n) (denominator (/ (A065642 n) n)))
    
Showing 1-3 of 3 results.