A285101 a(0) = 2, for n > 0, a(n) = a(n-1)*A242378(n,a(n-1)), where A242378(n,a(n-1)) shifts the prime factorization of a(n-1) n primes towards larger primes with A003961.
2, 6, 210, 3573570, 64845819350301990, 28695662573739152697846686144187168109530, 1038300112150956151877699324649731518883355380534272386781875587619359740733888844803014212990
Offset: 0
Keywords
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..9
Crossrefs
Programs
-
PARI
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A242378(k,n) = { while(k>0,n = A003961(n); k = k-1); n; }; A285101(n) = { if(0==n,2,A285101(n-1)*A242378(n,A285101(n-1))); };
-
Python
from sympy import factorint, prime, primepi from operator import mul from functools import reduce def a003961(n): f=factorint(n) return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**f[i] for i in f]) def a242378(k, n): while k>0: n=a003961(n) k-=1 return n l=[2] for n in range(1, 7): x=l[n - 1] l.append(x*a242378(n, x)) print(l) # Indranil Ghosh, Jun 27 2017
-
Scheme
(definec (A285101 n) (if (zero? n) 2 (* (A285101 (- n 1)) (A242378bi n (A285101 (- n 1)))))) ;; For A242378bi see A242378.
Comments