A285132 Expansion of Product_{k>=0} 1/(1-x^(5*k+4))^(5*k+4).
1, 0, 0, 0, 4, 0, 0, 0, 10, 9, 0, 0, 20, 36, 14, 0, 35, 90, 101, 19, 56, 180, 320, 202, 108, 315, 730, 859, 492, 533, 1390, 2300, 2139, 1354, 2393, 4835, 6475, 5098, 4619, 8813, 14926, 16395, 12982, 15751, 28962, 41162, 40256, 35200, 51731, 85365, 106145
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[Product[1/(1-x^(5*k-1))^(5*k-1), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Apr 15 2017 *)
-
PARI
x='x+O('x^100); Vec(prod(k=0, 100, 1/(1 - x^(5*k + 4))^(5*k + 4))) \\ Indranil Ghosh, Apr 15 2017
Formula
a(n) ~ exp(5*c + 3*2^(-2/3)*5^(-1/3)*Zeta(3)^(1/3)*n^(2/3)) * (2*Zeta(3))^(31/180) / (sqrt(3) * 5^(17/36) * Gamma(4/5) * n^(121/180)), where c = Integral_{x=0..inf} ((19/(exp(x)*300) + 1/(exp(4*x)*(1-exp(-5*x))^2) - 1/(25*x^2) - 1/(25*x))/x) dx = -0.12699586713882325294527057473113580561183418857868946729897216431919... - Vaclav Kotesovec, Apr 15 2017
Comments